Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.10.544

Influence of Sr and TiB on the Microstructure and Eutectic Temperature of Al-12Si Die-Cast Alloys  

Choi, Yong-Lak (Department of Advanced Materials Engineering, Soonchunhyang University)
Kim, Seon-Hwa (Department of Advanced Materials Engineering, Soonchunhyang University)
Kim, Dong-Hyun (Samkee Automotive)
Yoon, Sang-Il (Samkee Automotive)
Kim, Ki-Sun (Samkee Automotive)
Publication Information
Korean Journal of Materials Research / v.27, no.10, 2017 , pp. 544-551 More about this Journal
Abstract
In order to develop a new commercial Al-12%Si casting alloy with improved physical properties, we investigated the effect of adding Sr and TiB to the alloy. Al-12%Si alloys were prepared by die casting at $660^{\circ}C$. The eutectic temperature of the Sr-modified Al-12%Si alloy decreased to $9^{\circ}C$ and the mushy zone region increased. The shape of the Si phase changed from coarse acicula to fine fiber with the addition of Sr. The addition of TiB in the Al-12%Si alloy reduced the size of the primary ${\alpha}$-Al and eutectic Si phases. When Sr and TiB were added together, it worked more effectively in refinement and modification. The density of twins in the Si phase-doped Sr increased and the width of the twins was refined to 5 nm. These results are related to the impurity induced twinning(IIT) growth.
Keywords
Al-12Si alloy; die-casting; twin; eutectic Si; TPRE; IIT;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Espinoza-Cuadra, P. Gallegos-Acevedo, H. Mancha-Molinar and A. Picado, Mater. Des., 31, 343 (2010).   DOI
2 G. K. Sigworth, S. Shivkumar and D. Apelian, AFS Transactions, 97, 811 (1989).
3 Y. D. Kwon and Z. H. Lee, Mater. Sci. Eng. A, 360, 372 (2003).   DOI
4 S. Xigui, B. Xiufang, Z. Jingxiang and Z. Jie, J. Alloys and Compds., 479, 670 (2009).   DOI
5 M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura and J. Banhart, Acta Mater., 60, 3920 (2012).   DOI
6 M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, D. Isheim, G. Schmitz, S. Matsumura and J. Banhart, Ultramicroscopy, 132, 216 (2013).   DOI
7 S. K. Guan, S. J. Zhu, L. G. Wang, Q. Yang, W. B. Cao, Trans. Nonferrous Met. Soc. China, 17, 1143 (2007).   DOI
8 J. Barrirero, M. Engstler, N. Ghafoor, Niels de Jonge, Magnus Oden, Frank Mucklich, J. Alloys Compd., 611, 410 (2014).   DOI
9 J. H. Li, M. Z. Zarif, M. Albu, B. J. McKay, F. Hofer and P. Schumacher, Acta Mater., 72, 80 (2014).   DOI
10 W. Khalifaa, Y. Tsunekawab and M. Okumiyab, J. Mater. Process. Technol., 210, 2178 (2010).   DOI
11 M. Okayasua, Y. Ohkurab, S. Takeuchia, S. Takasub, H. Ohfujic and T. Shiraishi, Mater. Sci. Eng. A, 543, 185 (2012).   DOI
12 S. Janudom, T. Rattanochaikul, R. Burapa, S. Wisutmethangoon and J. Wannasin, Trans. Nonferrous Met. Soc. China 20, 1756 (2010).   DOI
13 T. Chikada, J. Jpn Inst. Light Met., 40, 944 (1990).   DOI
14 G. K. Sigworth, AFS Transactions, 91, 7 (1983).
15 A. Kaye, A. Street, p. 231-235, Butterworth-Heinemann, London (1982).
16 K. T. Kashyap, S. Murali, K. S. Raman and K. S. S. Murth, Mater. Sci. Tech., 9, 189 (1993).   DOI
17 C. H. Caceres and J. R. Griffiths, Acta. Meter., 44, 25 (1960).
18 F. H. Samuel, A. M. Samuel, P. Ouellet and H. W. Doty, Metall. Mater. Trans. A, 29, 2871 (1998).   DOI
19 A. Kosa, Z. Gacsi and J. Dul, Mater. Sci. Eng., 37, 43 (2012).
20 X. Liu, Y. Zhang, B. Beausir, F. Liu, C. Esling, F. Yu, X. Zhao and L. Zuo, Acta Mater., 97, 338 (2015).   DOI
21 W. Eidhed, J. Mater. Sci. Technol., 24, 45 (2008).   DOI
22 J. Eiken, M. Apel, S. M. Liang, R. Schmid-Fetzer, Acta Mater., 98, 152 (2015).   DOI
23 Y. Sui, Q. Wang, G. Wang, T. Liu, J. Alloys Compd., 622, 572 (2015).   DOI
24 M. Shamsuzzoha, L. M. Hogan, D. J. Smith, P. A. Deymier, J. Cryst. Growth, 112, 635 (1991).   DOI
25 B. M. Thall, B. Chalmers, J. Inst. Met., 77, 79 (1950).
26 S. Z .Lu and A. Hellawell, J. Cryst. Growth, 73, 316 (1985).   DOI
27 S. Z. Lu and A. Hellawell, Metall. Trans. A, 18A, 1721 (1987).
28 C. H. Liu, J. H. Chen, C. Li, C. L. Wu, D. Z. Li and Y. Y. Li, Scripta Mater., 64, 339 (2011).   DOI
29 L. Lua, K. Nogita and A. K. Dahle, Mater. Sci. Eng. A, 399, 244 (2005).   DOI
30 L. Hegncheng, B. Juanjuan, Z. Min, D. Ke, J. Yunfeng and C. Mingdong, China Foundry, 6, 226 (2009).
31 C. Zhongwei and Z. Ruijie, China Foundry, 7, 149 (2010).
32 A. K. Dahle, K. Nogita, S. D. McDonald, C. Dinnis and L. Luc, Mater. Sci. Eng. A, 413-414, 243 (2005).   DOI
33 S. Farahany, A Ourdjini, TAA Bakar and MH Idris, Thermochimica Acta, 575, 179 (2014).   DOI
34 T. B. Abbott and B. A. Parker, Cast Metals, 1, 122 (1988).   DOI
35 M. A. Irfan, D. Schwam, A. Karve, R. Ryder, Mater. Sci. Eng. A, 535, 108 (2012).   DOI
36 T. Sritharan and H. Li, J. Mater. Process. Technol., 63, 585 (1997).   DOI
37 C. B. Kim and R. W. Heine, J. Inst. Met., 92, 367 (1963-64).
38 K. Nogita, S. D. McDonald, K. Tsujimoto, K. Yasuda and A. K. Dahle, J. Electron Microsc., 53, 361 (2004).   DOI
39 L. Yu, X. Liu, H. Ding and X. Bian, J. Alloys Compd., 429, 119 (2007).   DOI
40 S. Shankar, Y. W. Riddle, M. M. Makhlouf, Acta Mater., 52, 4447 (2004).   DOI
41 P. B. Crosley and L. F. Mondolfo, Modern Casting, 49, 53 (1966).
42 B. Suares-Pena and J. Asensio-Lozano, Scripta Mater., 54, 1543 (2006).   DOI
43 K. Nogita, S. D. McDonald and A. K. Dahle, Mater. Trans., 44, 692 (2003).   DOI
44 P. B. Crossley and L. F.Mondolfo, Trans. AIME, 191, 1143 (1951).