• Title/Summary/Keyword: Si thin film solar cells

Search Result 150, Processing Time 0.028 seconds

High Performance Amorphous Silicon Oxide Thin Film Solar Cells Fabricated at Very Low Temperature (극저온에서 증착된 비정질실리콘 산화막 기반의 고성능 박막태양전지)

  • Kang, Dong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1694-1696
    • /
    • 2016
  • Present thin film solar cells with hydrogenated amorphous silicon oxide (a-SiO:H) as an absorber suffer from low fill factor(FF) of 61~64 [%] in spite of its benefits related to high open circuit voltage ($V_{oc}$). Since degraded quality of a-SiO:H absorber by alloying with oxygen can affect the FF, we aimed to achieve high photosensitivity by minimizing $CO_2$ gas addition. Improving optical gap($E_{opt}$) has been attained by strong hydrogen dilution combined with lowering substrate temperature down to 100 [$^{\circ}C$]. Small amount of the $CO_2$ was added in order to disturb microcrystalline formation by high hydrogen dilution. The developed a-SiO:H has high photosensitivity (${\sim}2{\times}10^5$) and high $E_{opt}$ of 1.85 [eV], which contributed to attain remarkable FF of 74 [%] and high $V_{oc}$ (>1 [V]). As a result, high power conversion efficiency of 7.18 [%] was demonstrated by using very thin absorber layer of only 100 [nm], even though we processed all experiment at extremely low temperature of 100 [$^{\circ}C$].

Advances in Absorbers and Reflectors of Amorphous Silicon Oxide Thin Film Solar Cells for Tandem Devices (적층형 태양전지를 위한 비정질실리콘계 산화막 박막태양전지의 광흡수층 및 반사체 성능 향상 기술)

  • Kang, Dong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.115-118
    • /
    • 2017
  • Highly photosensitive and wide bandgap amorphous silicon oxide (a-$SiO_x$:H) films were developed at low temperature ranges ($100{\sim}150^{\circ}C$) with employing plasma-enhanced chemical vapor deposition by optimizing $H_2/SiH_4$ gas ratio and $CO_2$ flow. Photosensitivity more than $10^5$ and wide bandgap (1.81~1.85 eV) properties were used for making the a-$SiO_x$:H thin film solar cells, which exhibited a high open circuit voltage of 0.987 V at the substrate temperature of $100^{\circ}C$. In addition, a power conversion efficiency of 6.87% for the cell could be improved up to 7.77% by employing a new n-type nc-$SiO_x$:H/ZnO:Al/Ag triple back-reflector that offers better short circuit currents in the thin film photovoltaic devices.

High Work Function of AZO Fhin Films as Insertion Layer between TCO and p-layer and Its Application of Solar Cells

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.426.1-426.1
    • /
    • 2016
  • We report high work function Aluminum doped zinc oxide (AZO) films as insertion layer as a function of O2 flow rate between transparent conducting oxides (TCO) and hydrogenated amorphous silicon oxide (a-SiOx:H) layer to improve open circuit voltage (Voc) and fill factor (FF) for high efficiency thin film solar cell. However, amorphous silicon (a-Si:H) solar cells exhibit poor fill factors due to a Schottky barrier like impedance at the interface between a-SiOx:H windows and TCO. The impedance is caused by an increasing mismatch between the work function of TCO and that of p-type a-SiOx:H. In this study, we report on the silicon thin film solar cell by using as insertion layer of O2 reactive AZO films between TCO and p-type a-SiOx:H. Significant efficiency enhancement was demonstrated by using high work-function layers (4.95 eV at O2=2 sccm) for engineering the work function at the key interfaces to raise FF as well as Voc. Therefore, we can be obtained the conversion efficiency of 7 % at 13mA/cm2 of the current density (Jsc) and 63.35 % of FF.

  • PDF

A study of the light trapping mechanism in periodically honeycomb texture-etched substrate for thin film silicon solar cells

  • Kim, Yongjun;Shin, Munghun;Park, Hyeongsik;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.147.2-148
    • /
    • 2016
  • Light management technology is very important for thin film solar cells, which can reduce optical reflection from the surface of thin film solar cells or enhance optical path, increasing the absorption of the incident solar light. Using proper light trapping structures in hydrogenated amorphous silicon (a-Si:H) solar cells, the thickness of absorber layers can be reduced. Instead, the internal electric field in the absorber can be strengthened, which helps to collect photon generated carriers very effectively and to reduce light-induced loss under long-term light exposure. In this work, we introduced a chemical etching technology to make honey-comb textures on glass substrates and analyzed the optical properties for the textured surface such as transmission, reflection and scattering effects. Using ray optics and finite difference time domain method (FDTD) we represented the behaviors of light waves near the etched surfaces of the glass substrates and discussed to obtain haze parameters for the different honey-comb structures. The simulation results showed that high haze values were maintained up to the long wavelength range over 700 nm, and with the proper design of the honey-comb structure, reflection or transmission of the glass substrates can be enhanced, which will be very useful for the multi-junction (tandem or triple junction) thin film a-Si:H solar cells.

  • PDF

Plasma Textured Glass Surface Morphologies for Amorphous Silicon Thin Film Solar Cells-A review

  • Hussain, Shahzada Qamar;Balaji, Nagarajan;Kim, Sunbo;Raja, ayapal;Ahn, Shihyun;Park, Hyeongsik;Le, Anh Huy Tuan;Kang, Junyoung;Yi, Junsin;Razaq, Aamir
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.98-103
    • /
    • 2016
  • The surface morphology of the front transparent conductive oxide (TCO) films plays a vital role in amorphous silicon thin film solar cells (a-Si TFSCs) due to their high transparency, conductivity and excellent light scattering properties. Recently, plasma textured glass surface morphologies received much attention for light trapping in a-Si TFSCs. We report various plasma textured glass surface morphologies for the high efficiency of a-Si TFSCs. Plasma textured glass surface morphologies showed high rms roughness, haze ratio with micro- and nano size surface features and are proposed for future high efficiency of a-Si TFSCs.

Microcrystalline Silicon Thin Films and Solar Cells by Hot-Wire CVD (Hot-Wire CVD법에 의한 미세결정 실리콘 박막 증착 및 태양전지 응용)

  • Lee, Jeong-Chul;Yoo, Jin-Su;Kang, Ki-Hwan;Kim, Seok-Ki;Yoon, Kyung-Hoon;Song, Jin-Soo;Park, I-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.66-69
    • /
    • 2002
  • This paper presents deposition and characterizations of microcrystalline silicon$({\mu}c-Si:H)$ films prepared by hot wire chemical vapor deposition at substrate temperature below $300^{\circ}C$. The $SiH_{4}$ concentration$[F(SiH_{4})/F(SiH_{4})+F(H_{2})]$ is critical parameter for the formation of Si films with microcrystalline phase. At 6% of silane concentration, deposited intrinsic ${\mu}c-Si:H$ films shows sufficiently low dark conductivity and high photo sensitivity for solar cell applications. P-type ${\mu}c-Si:H$ films deposited by Hot-Wire CVD also shows good electrical properties by varying the rate of $B_{2}H_{6}$ to $SiH_{4}$ gas. The solar cells with structure of Al/nip ${\mu}c-Si:H$/TCO/glass was fabricated with single chamber Hot-Wire CVD. About 3% solar efficiency was obtained and applicability of HWCVD for thin film solar cells was proven in this research.

  • PDF

High-Efficiency a-Si:H Solar Cell Using In-Situ Plasma Treatment

  • Han, Seung Hee;Moon, Sun-Woo;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok;Lee, Seungmin;Kim, Jungsu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.230-230
    • /
    • 2013
  • In amorphous or microcrystalline thin-film silicon solar cells, p-i-n structure is used instead of p/n junction structure as in wafer-based Si solar cells. Hence, these p-i-n structured solar cells inevitably consist of many interfaces and the cell efficiency critically depends on the effective control of these interfaces. In this study, in-situ plasma treatment process of the interfaces was developed to improve the efficiency of a-Si:H solar cell. The p-i-n cell was deposited using a single-chamber VHF-PECVD system, which was driven by a pulsed-RF generator at 80 MHz. In order to solve the cross-contamination problem of p-i layer, high RF power was applied without supplying SiH4 gas after p-layer deposition, which effectively cleaned B contamination inside chamber wall from p-layer deposition. In addition to the p-i interface control, various interface control techniques such as thin layer of TiO2 deposition to prevent H2 plasma reduction of FTO layer, multiple applications of thin i-layer deposition and H2 plasma treatment, H2 plasma treatment of i-layer prior to n-layer deposition, etc. were developed. In order to reduce the reflection at the air-glass interface, anti-reflective SiO2 coating was also adopted. The initial solar cell efficiency over 11% could be achieved for test cell area of 0.2 $cm^2$.

  • PDF

A Novel Hydrogen-reduced P-type Amorphous Silicon Oxide Buffer Layer for Highly Efficient Amorphous Silicon Thin Film Solar Cells (고효율 실리콘 박막태양전지를 위한 신규 수소저감형 비정질실리콘 산화막 버퍼층 개발)

  • Kang, Dong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1702-1705
    • /
    • 2016
  • We propose a novel hydrogen-reduced p-type amorphous silicon oxide buffer layer between $TiO_2$ antireflection layer and p-type silicon window layer of silicon thin film solar cells. This new buffer layer can protect underlying the $TiO_2$ by suppressing hydrogen plasma, which could be made by excluding $H_2$ gas introduction during plasma deposition. Amorphous silicon oxide thin film solar cells with employing the new buffer layer exhibited better conversion efficiency (8.10 %) compared with the standard cell (7.88 %) without the buffer layer. This new buffer layer can be processed in the same p-chamber with in-situ mode before depositing main p-type amorphous silicon oxide window layer. Comparing with state-of-the-art buffer layer of AZO/p-nc-SiOx:H, our new buffer layer can be processed with cost-effective, much simple process based on similar device performances.

Eutectic Temperature Effect on Au Thin Film for the Formation of Si Nanostructures by Hot Wire Chemical Vapor Deposition

  • Ji, Hyung Yong;Parida, Bhaskar;Park, Seungil;Kim, MyeongJun;Peck, Jong Hyeon;Kim, Keunjoo
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • We investigated the effects of Au eutectic reaction on Si thin film growth by hot wire chemical vapor deposition. Small SiC and Si nano-particles fabricated through a wet etching process were coated and biased at 50 V on micro-textured Si p-n junction solar cells. Au thin film of 10 nm and a Si thin film of 100 nm were then deposited by an electron beam evaporator and hot wire chemical vapor deposition, respectively. The Si and SiC nano-particles and the Au thin film were structurally embedded in Si thin films. However, the Au thin film grew and eventually protruded from the Si thin film in the form of Au silicide nano-balls. This is attributed to the low eutectic bonding temperature ($363^{\circ}C$) of Au with Si, and the process was performed with a substrate that was pre-heated at a temperature of $450^{\circ}C$ during HWCVD. The nano-balls and structures showed various formations depending on the deposited metals and Si surface. Furthermore, the samples of Au nano-balls showed low reflectance due to surface plasmon and quantum confinement effects in a spectra range of short wavelength spectra range.

Characterization of ${\mu}c$-Si:H Thin-film Solar Cells by Hot-wire CVD

  • Lee, J.C.;Chung, Y.S.;Kim, S.K.;Youn, K.H.;Song, J.S.;Park, I.J.;Kwon, S.W.;Lim, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1598-1600
    • /
    • 2003
  • Microcrystalline silicon(c-Si:H) thin-film solar cells are prepared with intrinsic Si-layer by hot wire CVD. The operating parameters of solar cells are strongly affected by the filament temperature ($T_f$) during intrinsic layer. Jsc and efficiency abruptly decreases with elevated $T_f$ to $1400^{\circ}C$. This deterioration of solar cell parameters are resulted from increase of crystalline volume fraction and corresponding defect density at high $T_f$ The heater temperature ($T_h$) are also critical parameter that controls device operations. Solar cells prepared at low $T_h$ (<$200^{\circ}C$) shows a similar operating properties with devices prepared at high $T_f$, i.e. low Jsc, Voc and efficiency. The origins for this result, however, are different with that of inferior device performances at high $T_f$. In addition the phase transition of the silicon films occurs at different silane concentration (SC) by varying filament temperature, by which highest efficiency with SC vanes with $T_f$.

  • PDF