• Title/Summary/Keyword: Si particle size

Search Result 623, Processing Time 0.028 seconds

The Effect of Ni, Ce Addition and Extrusion Temperature on Al-Si Alloy (Al-Si 합금에 Ni, Ce 첨가 효과와 압출온도의 영향)

  • 이태행;홍순직
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.34-42
    • /
    • 2004
  • The effect of extrusion temperature on the microstructure and mechanical properties were studied in He-gas atomized $Al_{81-(x+y)}Si_{19}Ni_xCe_y$ alloy powders and their extruded bars using SEM, tensile testing and thermal expansion testing. The extruded bar of $Al_{73}Si_{19}Ni_7Ce_1$ alloy consists of a mixed structure in which fine Si particles with a particle size below 20∼500nm and very fine $Al_3Ni,\;Al_3Ce$ compounds with a particle size below 200nm are homogeneously dispersed in Al martix with a grain size below 500nm. With increasing extrusion temperature, the microstructural scale was decreased. The ultimate tensile strength of the alloy bars has incresed with decreasing extrusion temperature from 500 to 35$0^{\circ}C$ and $Al_{73}Si_{19}Ni_7Ce_1$ alloy extreded at 35$0^{\circ}C$ shows a highest tensile strength of 810 MPa due to the fine namostructure. The addition of Ni and Ce decreased the coefficients of thermal expansion and the effects of extression temperature on the thermal expansion were not significant.

Preparation of High Purity Si Powder by SHS (자전 연소 합성법에 의한 고순도 실리콘 분말제조)

  • Shin, Chang-Yun;Min, Hyun-Hong;Yun, Ki-Seok;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.93-97
    • /
    • 2007
  • High purity Si powder was prepared in the system of $SiO_2-Mg$ combustion reaction. Various conditions of combustion reaction and leaching were investigated. As the particle size of Mg decreased and the compaction pressure increased the quantity of the unreacted power was decreased. In the acid leaching of MgO, increasing particle size, reaction temperature, rotating speed and reaction time made leaching effect low. Final Si powder produced by combustion and leaching reaction, has a high purity of 99.9% with irregular shape.

The Influence of Powder Size on Mechanical Properties of Small MIM Parts

  • Yasui, Noriyuki;Satomi, Hiroshi;Fujiwara, Hiroshi;Ameyama, Kei;Kankawa, Yoshimitsu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.39-40
    • /
    • 2006
  • The relationship between the powder particle size change and a mechanical property of the Metal Injection Molding (MIM) product was examined in detail. The XRD results indicate that the diffraction peaks of BCC appeared in compacts of powder particle size of 4 to $10{\mu}m$ as well as the bulk SUS630. However, the diffraction peaks from both BCC and FCC were observed in the compact with powder size less than $3{\mu}m$. TEM observation revealed that the powder with those BCC/FCC two phase structure have a finely dispersed $SiO_2$ precipitates. Because the Si is ferrite stabilizing element, decrease of Si composition in the matrix phase by the $SiO_2$ precipitation resulted in formation of the retained austenite. Therefore, controlling the elements such as Si as well as oxygen decrease is very important to obtain a normal microstructure in ultra-fine powder $(<3{\mu}m)$ injection molding.

  • PDF

Interfacial Characteristics and Mechanical Properties of HPHT Sintered Diamond/SiC Composites (초고압 소결된 다이아몬드/실리콘 카바이드 복합재료의 계면특성 및 기계적 특성)

  • Park, Hee-Sub;Ryoo, Min-Ho;Hong, Soon-Hyung
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.416-423
    • /
    • 2009
  • Diamond/SiC composites are appropriate candidate materials for heat conduction as well as high temperature abrasive materials because they do not form liquid phase at high temperature. Diamond/SiC composite consists of diamond particles embedded in a SiC binding matrix. SiC is a hard material with strong covalent bonds having similar structure and thermal expansion with diamond. Interfacial reaction plays an important role in diamond/SiC composites. Diamond/SiC composites were fabricated by high temperature and high pressure (HPHT) sintering with different diamond content, single diamond particle size and bi-modal diamond particle size, and also the effects of composition of diamond and silicon on microstructure, mechanical properties and thermal properties of diamond/SiC composite were investigated. The critical factors influencing the dynamics of reaction between diamond and silicon, such as graphitization process and phase composition, were characterized. Key factor to enhance mechanical and thermal properties of diamond/SiC composites is to keep strong interfacial bonding at diamond/SiC composites and homogeneous dispersion of diamond particles in SiC matrix.

Control of Particle Size and Luminescence Property in Zn$_2$SiO$_4$:Mn Green Phosphor (Zn$_2$SiO$_4$:Mn 녹색형광체의 입도제어 및 발광특성)

  • Seong, Bu-Yong;Jeong, Ha-Gyun;Park, Hui-Dong
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.636-640
    • /
    • 2001
  • In order to improve the optical Performance of green emitting phosphor for plasma display panel (PDP) application, the wet chemical method for preparing $Zn_{2-x}$ $SiO_4$:xMn (xi=0.02. 0.08) phosphor was designed. The spherical phosphor particles were obtained and the size can be between 0.5$\mu\textrm{m}$ and 2$\mu\textrm{m}$. The formation of phosphor, which had the willemite structure, was completed at relatively low temperature of 108$0^{\circ}C$. Also, photoluminescence Properties of the phosphors prepared were investigated under vacuum ultraviolet excitation. In particular, the emission intensity of Zn$_2$SiO$_4$:0.08Mn phosphor having the 1$\mu\textrm{m}$ of particle size was higher than that of commercial phosphor by 40%. The decay time of zinc silicate powder prepared as containing 8 mole% of manganese has been measured as 7.8ms.

  • PDF

Control of Particle Size and Luminescence Property in Zn$_2$SiO$_4$:Mn Green Phosphor (Zn$_2$SiO$_4$:Mn 녹색형광체의 입도제어 및 발광특성)

  • 성부용;정하균;박희동
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.363-363
    • /
    • 2001
  • In order to improve the optical Performance of green emitting phosphor for plasma display panel (PDP) application, the wet chemical method for preparing $Zn_{2-x}$ $SiO_4$:xMn (xi=0.02. 0.08) phosphor was designed. The spherical phosphor particles were obtained and the size can be between 0.5$\mu\textrm{m}$ and 2$\mu\textrm{m}$. The formation of phosphor, which had the willemite structure, was completed at relatively low temperature of 108$0^{\circ}C$. Also, photoluminescence Properties of the phosphors prepared were investigated under vacuum ultraviolet excitation. In particular, the emission intensity of Zn$_2$SiO$_4$:0.08Mn phosphor having the 1$\mu\textrm{m}$ of particle size was higher than that of commercial phosphor by 40%. The decay time of zinc silicate powder prepared as containing 8 mole% of manganese has been measured as 7.8ms.

Manufacture of SiC matrix for PAFC (인산형 연료전지용 SiC MATRIX 제조)

  • 김영우;이주성
    • Journal of Energy Engineering
    • /
    • v.2 no.2
    • /
    • pp.187-193
    • /
    • 1993
  • Porous matrices to contain and support phosphoric acid were prepared with PTFE as binder and SiC whisker or SiC powders of various particle size for phosphoric acid fuel cell(PAFC). Among the matrix characteristics the most important factors in stack performances were thought to be the bubble pressure and electrolyte wettability And then matrix was constructed to have pore size smaller than that of electrode. The bubble pressures and wettabilities of matrices manufactured with various size of SiC and different PTFE contents were investigated and related with the porosities measured by porosimeter, and then the optimum manufacturing condition of matrix for PAFC was determined.

  • PDF

Preparation and Characterization of Zn2SiO4:Mn2+ Green Phosphor with Solid State Reaction (고상법에 의한 Zn2SiO4:Mn2+녹색 형광체의 제조와 특성에 관한 연구)

  • Yoo, Hyeon-Hee;Nersisyan, Hayk;Won, Hyung-Il;Won, Chang-Whan
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.352-356
    • /
    • 2011
  • [ $Zn_{2(1-x)}Mn_xSiO_4$ ]$0.07{\leq}x{\leq}0.15$) green phosphor was prepared by solid state reaction. The first heating was at $900^{\circ}C-1250^{\circ}C$ in air for 3 hours and the second heating was at $900^{\circ}C$ in $N_2/H_2$(95%/5%) for 2 hours. The size effect of $SiO_2$ in forming $Zn_2SiO_4$ was investigated. The temperature for obtaining single phase $Zn_2SiO_4$ was lowered from $1100^{\circ}C$ to $1000^{\circ}C$ by decreasing the $SiO_2$ particle size from micro size to submicro size. The effect of the activators for the Photoluminescence (PL) intensity of $Zn_2SiO_4:Mn^{2+}$ was also investigated. The PL intensity properties of the phosphors were investigated under vacuum ultraviolet excitation (147 nm). The emission spectrum peak was between 520 nm and 530 nm, which was involved in green emission area. $MnCl_2{\cdot}4H_2O$, the activator source, was more effective in providing high emission intensity than $MnCO_3$. The optimum conditions for the best optical properties of $Zn_2SiO_4:Mn^{2+}$ were at x = 0.11 and $1100^{\circ}C$. In these conditions, the phosphor particle shape was well dispersed spherical and its size was 200 nm.

Characterization of Chemically Stabilized $\beta$-cristobalite Synthesized by Solution-Polymerization Route

  • Lee, Sang-Jin
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.116-123
    • /
    • 1997
  • A chemically stabilized $\beta$-cristobalite, which is stabilized by stuffing cations of $Ca^{2+}$ and $Al^{3+}$, was prepared by a solution-polymerization route employing Pechini resin or PVA solution as a polymeric carrier. The polymeric carrier affected the crystallization temperature, morphology of calicined powder, and particle size distribution. In case of the polyvinyl alcohol (PVA) solution process, a fine $\beta$-cristobalite powder with a narrow particle size distribution (average particle size : 0.3$\mu\textrm{m}$) and a BET specific surface area of 72 $\m^2$/g was prepared by an attrition-milling for 1 h after calcination at 110$0^{\circ}C$ for 1h. Wider particle size distribution and higher specific surface area were observed for the $\beta$-cristobalite powder derived from Pechini resin. The cubie(P1-to-tetraganalb) phase transformation in polynystalline $\beta$-cristobalite was induced at approximately 18$0^{\circ}C$. Like other materials showing transformation toughening, a critical size effect controlled the $\beta$-to-$\alpha$ transformation. Densifed cristobalite sample had some cracks in its internal texture after annealing. The cracks, occurred spontaneoulsy on cooling, were observed in the sample with an average grain sizes of 4.0 $\mu\textrm{m}$ or above. In case of the sintered cristobalite having a composition of CaO.$2Al_2O_3$.40SiO$_2$, small amount of amorphous phase and slow grain growth during annealing were observed. Shear stress-induced transformation was also observed in ground specimen. Cristobalite having a composition of CaO.2Al2O3.80SiO2 showed a more sensitive response to shear stress than the CaO.$2Al_2O_3$.40SiO$_2$ type cristobalite. Shear-induced transformation resulted in an increase of volume about 13% in $\alpha$-cristobalite phase on annealing for above 10 h in the case of the former composition.

  • PDF