Control of Particle Size and Luminescence Property in Zn$_2$SiO$_4$:Mn Green Phosphor

Zn$_2$SiO$_4$:Mn 녹색형광체의 입도제어 및 발광특성

  • Seong, Bu-Yong (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Jeong, Ha-Gyun (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Park, Hui-Dong (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 성부용 (한국화학연구원 화학소재연구부) ;
  • 정하균 (한국화학연구원 화학소재연구부) ;
  • 박희동 (한국화학연구원 화학소재연구부)
  • Published : 2001.08.01

Abstract

In order to improve the optical Performance of green emitting phosphor for plasma display panel (PDP) application, the wet chemical method for preparing $Zn_{2-x}$ $SiO_4$:xMn (xi=0.02. 0.08) phosphor was designed. The spherical phosphor particles were obtained and the size can be between 0.5$\mu\textrm{m}$ and 2$\mu\textrm{m}$. The formation of phosphor, which had the willemite structure, was completed at relatively low temperature of 108$0^{\circ}C$. Also, photoluminescence Properties of the phosphors prepared were investigated under vacuum ultraviolet excitation. In particular, the emission intensity of Zn$_2$SiO$_4$:0.08Mn phosphor having the 1$\mu\textrm{m}$ of particle size was higher than that of commercial phosphor by 40%. The decay time of zinc silicate powder prepared as containing 8 mole% of manganese has been measured as 7.8ms.

PDP용 녹색 형광체의 발광특성을 개선시키기 위해 고안된 액상의 화학적 합성법을 사용하여 조성식이 $Zn_{2-x}$ $SiO_4$:xMn(x=0.05, 0.08)인 형광체를 입자크기가 0.5~2$\mu\textrm{m}$로 조절하여 제조하였다. 제조된 형광체 입자는 구상이며 잘 분산된 형상을 봉주었고, 고상반응법에 비해 상대적으로 낮은 $1080^{\circ}C$에서 willemite구조의 단일상을 얻을 수 있었다. 또한 진공 자외선 영역의 147 nm의 여기원을 사용하여 광발광 특성을 조사하였다. 입자의 크기가 1$\mu\textrm{m}$이고 Mn의 도핑양이 8mole%일 때, 상용 형광체와 비교하여 발광세기는 약 40% 향상되었고 색좌표는 x=0.24, y=0.69로 거의 일치하는 결과를 얻을 수 있었다. 측정된 형광체의 잔광시간은 7.8ms이었다.

Keywords

References

  1. K.-S. Sohn, B. Coo and H. D. Park, Mater. Lett., 41, 303(1999) https://doi.org/10.1016/S0167-577X(99)00147-0
  2. R. Morimo, R. Mochihanga, and K. Nakamura, 29(7), 751 (1994)
  3. R. Morimo and K. Matae, Mat. Res. Bull., 24(7), 175 (1989) https://doi.org/10.1016/0025-5408(89)90122-0
  4. Tc. I. Khistov, N. V. Popovich, S. S. Galaktionov and N. P. Soshchin, Inorg. mat., 32 (l) , 80 (1996)
  5. K. Su, T. D. Tilley and M. J. Sailor, J. Am. Chem. Soc., 118, 3459 (1996) https://doi.org/10.1021/ja9537639
  6. B.Y. Sung, Jung, H.-., Park, H.D., and D.S. Kim, J. Kor. Ceram. Soc., 37 (8), 74 (2000)
  7. Morell and N. El Khiati, J. Electrochem. Soc., 140 (7), 2019 (1993) https://doi.org/10.1149/1.2220755
  8. E. van der Kolk, P. dorenbos, C. W. E. van Rijk, H. Bechtel, T. J?tel, H. Nikol, C. R. Ronda and D. U. Wiechert, J. Lumin., 87-89, 1246 (2000) https://doi.org/10.1016/S0022-2313(99)00529-3
  9. Jung, H.-K., Sohn, K.-S., Sung, B. Y., and Park, H. D., J. Information Display, 1 (35),35 (2000)
  10. A. L. N. Stevels and A. T. Vink, J. Lumin., 8, 443 (974) https://doi.org/10.1016/0022-2313(74)90009-X
  11. C. R. Ronda and T. Amrein, J. Lumin., 69, 245 (1996) https://doi.org/10.1016/S0022-2313(96)00103-2
  12. S. H. Cho and J. S. Yoo, J. Electrochem, Soc.. 45 (3), 1017(1998) https://doi.org/10.1149/1.1838380
  13. I. F. Chang, J. W. Brownlow, T. I. Sun and J. S. Wilson, J. Electrochem. Soc., 136(11), 3532(1989) https://doi.org/10.1149/1.2096500
  14. C. Barthou, J. Benoit and P. Benalloul, J. E1ectrochem. Soc., 141 (2),524 (1994) https://doi.org/10.1149/1.2054759
  15. J. Electrochem. Soc. v.141 no.2 C. Barthou;J. Benoit;P. Benalloul