• Title/Summary/Keyword: Si dissolution

Search Result 160, Processing Time 0.029 seconds

Dissolution Behavior of Plagioclase in HCl and KOH Solutions (염산과 수산화칼슘 수용액과의 반응에 의한 사장석의 용해 거동)

  • 현성필;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.71-81
    • /
    • 1996
  • Dissolution experiments were conducted to understand chemical nature of weathering of anorthosite from the Hadong area. Anorthosite and plagioclase from it were reacted with HCl or KOH solutions under various conditions concerning such as grain size, initial pH of solutions, and shaking Average composition of plagioclase used in the experiment was Na0.32Ca0.71Al1.71Si2.28O8.Under acidic conditions, solution pH increases rapidly in the initial stage and then gradually to reach palteau. Shaking agitates the reaction rate in the initial stage but does not affect after the system reached steady state. Ca and si concentrations show rapid increase and then gradual increase. Al concentration increases rapidly in the early stage and then decreases. Later decrease was interpreted as the precipitation of an Al-bearing material. Different dissolution rates of different constituents of plagioclase together the with precipitation of al-bearing material might be responsible for the non-stoichiometric dissolution of plagioclase.X-ray diffraction analyses on anorthosite before and after dissolution experiment show dissolution rates differ with different lattice planes of plagioclase. It suggests the crystallographic control on dissolution reaction. X-ray photoelectron spectroscopic result shows that the average composition of plagioclase surface reacted with HCL of initial pH 1.97 for 2000 hours is Na0.20Ca0.26Al1.7Si2.3O8. It means that Na- and Ca-depleted H-feldspar is developed without Al-depleted layer on the surface of plagioclase by reaction with HCl and that dissolution reaction takes place sparsely on the surface of plagioclase. Al and Si are dissolved preferentially over Ca from anorthosite powder in KHO solution. Reaction of acid-reacted anorthosite with KOH solution shows the same Si dissolution behavior as in the fresh anorthosite. This indicates that the Al-depleted and Si-enriched layer does not build up on the acid-reacted surface.

  • PDF

Growth and dissolution behavior of $CaO{\cdot}6Al_2O_3$ phase by reaction between alumina and silicate liquid phase (알루미나와 실리케이트 액상간의 반응에 따른 $CaO{\cdot}6Al_2O_3$ 상의 성장 및 용해 거동)

  • 백용균;박상엽
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.3
    • /
    • pp.291-298
    • /
    • 1995
  • Abstract The growth and dissolution behaviour of reaction phase was studied during dissolution reaction between sintered alumina and $CaMgSiO_4$ at $1600^{\circ}C$ for various times. The formation of $CaO{\cdot}6Al_2O_3$ an intermediate reaction phase, and $CaMgSiO_4$ spinel, the final reaction product were observed during dissolution reaction of alumina into $CaMgSiO_4$ liquid phase. The growth and dissolution shape of $CaO{\cdot}6Al_2O_3$, an intermediate phase, was quite different.

  • PDF

Effects of the Non-equilibrium Heat-treatment on Modification of Microstructures of Al-Si-Cu Cast Alloy (비평형 열처리에 의한 주조용 Al-Si-Cu합금 조직의 개량 효과)

  • Kim, Heon-Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.6
    • /
    • pp.391-397
    • /
    • 2000
  • Addition of Ca element and nonequilibrium heat treatment which promotes shape modification of eutectic Si and ${\beta}$ intermetallic compound were conducted to improve the mechanical properties of Al-Si-Cu alloy. Modification of eutectic Si and dissolution of needle-shape ${\beta}$ intermetallic compounds were possible by nonequilibrium heat treatment in which specimens were held at $505^{\circ}C$ for 2 hours in Al-Si-Cu alloy with Fe. Owing to the decrease in aspect ratio of eutectic Si by the heat treatment of the alloy with 0.33wt.% Fe, the increase in elongation was prominent to be more than double that in the as-cast specimen. Dissolution of needle-shape ${\beta}$ intermetallic compounds in the alloy with 0.85wt.% Fe led to the improvement of tensile strength as the length of ${\beta}$ compounds decreased to 50%.

  • PDF

A Study on Dissolution Behaviors of SiCp in Al-SiCp Composite (Al-SiCp복합재료에서 SiCp의 용해거동에 관한 연구)

  • Kim, Sug-Won;Lee, Eui-Kweon;Jeon, Woo-Yeoung
    • Journal of Korea Foundry Society
    • /
    • v.13 no.4
    • /
    • pp.350-358
    • /
    • 1993
  • Aluminum base composites reinforced with various amount of SiC particles and Mg contents have been investigated by different fabrication method for twenty-years. In this paper, how the decomposition and dissolution behaviors of $SiCp(20{\mu}m)$ in the melt of Al composites arised was studied. As the results, the decomposition and dissolution of SiCp into the melt of Al composites increased with increase of the temperature above $720^{\circ}C$, and holding time at a given melting temperature. Because SiC is thermodynamically unstable in this Al-SiCp composite at temperature above the liquidus, SiCp dissolves and reacts with Al in matrix to form $Al_4C_3$ according to following chemical equation $4Al+3SiC{\rightarrow}Al_4C_3+3Si$, Si decomposed and dissolved from SiCp increases Si content of matrix, while liquidus temperature of matrix decrease with increase of SiC content in matrix. The hardness of SiCp decreased with increase of the melting temperature, the hardness of the matrix /particle interface increased with increase of the melting temperature due to increase of the $Mg_2Si$ and $Al_4C_3$ intermetallic compounds, etc.

  • PDF

Dissolution Properties of K2O-CaO-MgO-SiO2-P2O5 Glasses (K2O-CaO-MgO-SiO2-P2O5계 유리의 제조 및 용출특성)

  • 이용수;윤태민;강원호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1132-1137
    • /
    • 2003
  • For the application of environment conscious glass-fertilizer, dissolution characteristics of phosphate glass was investigated. In 0.1K₂O-0.1SiO₂-0.6P₂O/sub 5/ glass system, the compositions were designed according to variation of CaO & MgO contents, and glass formation region was confirmed. From the glass composition, the confirmed glasses were investigated to figure out thermal and dissolution properties. It was detected that glass transition & softening temperature of the glasses increased with increasing MgO contents. The dissolution properties of the glasses was affected by CaO and MgO content ratio.

Effect of Precipitation and Dissolution of Si on the Thermal Diffusivity in the Al-Si Alloy System (열처리를 통한 Si 고용 및 석출 반응이 Al-Si 합금의 열확산도에 미치는 영향)

  • Kim, Yumi;Kim, Youngchan;Choi, Seweon
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.474-479
    • /
    • 2020
  • The effect of precipitation and dissolution of Si on the thermal diffusivity in the Al-Si alloy system is reported in this study and solution heat treatment followed by aging treatment is carried out to determine the effects of heat treatment on the thermal characteristics. The solution treatment is performed at 535 ℃ for 4 and 10 h and then the specimens are cooled by rapid quenching. The samples are aged at 300 ℃ for 4 h to precipitate Si solute. The addition of 9 wt% silicon contents makes the thermal diffusivity decrease from 78 to 74 mm/s2 in the cases of solid solution treated and quenched samples. After quenching and aging, the Si solute precipitates on the Al matrix and increases the thermal diffusivity compared with that after the quenched state. In particular, the increase of the thermal diffusivity is equal to 10 mm/s2 without relation to the Si contents in the Al-Si alloy, which seems to corresponded to solute amount of Si 1 wt% in the Al matrix.

$\beta$-SiC Formation Mechanisms in Si Melt-C-SiC System (용융 Si-C-SiC계에서 $\beta$-SiC 생성기구)

  • 서기식;박상환;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.655-661
    • /
    • 1999
  • ${\beta}$-SiC formation mechanism in Si melt-C-SiC system with varying in size of carbon source was investigated. A continuous reaction sintering process using Si melt infiltration method was adopted to control the reaction sintering time effectively. It was found that ${\beta}$-SiC formation mechanism in Si melt-C-SiC system was directly affected by the size of carbon source. In the Si melt-C-SiC system with large carbon source ${\beta}$-SiC formation mechanism could be divided into two stages depending on the reaction sintering time: in early stage of reaction sintering carbon dissolution in Si melt and precipitation of ${\beta}$-SiC was occurred preferentially and then SIC nucleation and growth was controlled by diffusion of carbon throughy the ${\beta}$-SiC layer formed on graphite particle. Furthmore a dissolution rate of graphite particles in Si melt could be accelerated by the infiltration of Si melt through basal plane of graphite crystalline.

  • PDF

Removal of Uranium from U-bearing Lime-Precipitate using dissolution and precipitation methods (우라늄 함유 석회침전물의 용해 및 침전에 의한 U 제거)

  • Lee, Eil-Hee;Lee, Keun-Young;Chung, Dong-Yong;Kim, Kwang-Wook;Lee, Kune-Woo;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • This study was carried out to remove (/recover) the uranium from the Uranium-bearing Lime Precipitate (ULP). An oxidative dissolution of ULP with carbonate-acidified precipitation and a dissolution of ULP with nitric acid-hydrogen peroxide precipitation were discussed, respectively. In point of view the dissolution of uranium in ULP, nitric acid dissolution which could dissolved more than 98% of uranium was more effective than carbonate dissolution. However, in this case, uranium was dissolved together with a large amount of impurities such as Al, Ca, Fe, Mg, Si, etc. and some impurities were also co-precipitated with uranium during a hydrogen peroxide precipitation. On the other hand, in the case of carbonate dissolution-acidified precipitation, U was dissolved less than 90%. Therefore, it was less effective than nitric acid dissolution for the volume reduction of radioactive solid waste. However, it was very effective to recover the pure uranium, because impurities were hardly dissolved and hardly co-precipitated with uranium.

Dissolution and Melting Phenomenon of Al2Cu according to Solution Treatment Temperature of Al12Si3Cu alloy (Al-Si-Cu합금의 용체화 처리 온도에 따른 Al2Cu 용해와 용융 현상)

  • Lee, Seunggwan;Kim, Chungseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • In this study, dissolution and melting phenomenon of the Al2Cu was studied for the high-strength Al-Si-Cu aluminum alloy in automobile component. The Solution heat treatment was performed at 480℃ and 510℃ for 4hours. Microstructure analysis of the specimen was performed using the optical micrograph and scanning electron microscope for qualitative and quantitative analysis of various phases, the chemical composition of secondary phases was achieved by energy dispersive spectroscopy (EDS) and electron probe micro analysis (EPMA). As a result of the electron probe micro analysis, a plate like Al2Cu phase was observed, and eutectic Si phase was observed of a coarsen plate shape. At a temperature of 510, necking phenomenon occurs in a specific part of plate like Al2Cu, and it is segmented and dissolved in the Al matrix. When the temperature of the alloy exceeds the melting point of Al2Cu, incipient melting occurs at the grain boundary of undissolved Cu particles

In-situ magnetization measurements and ex-situ morphological analysis of electrodeposited cobalt onto chemical vapor deposition graphene/SiO2/Si

  • Franco, Vinicius C. De;Castro, Gustavo M.B.;Corredor, Jeaneth;Mendes, Daniel;Schmidt, Joao E.
    • Carbon letters
    • /
    • v.21
    • /
    • pp.16-22
    • /
    • 2017
  • Cobalt was electrodeposited onto chemical vapor deposition (CVD) graphene/Si/$SiO_2$ substrates, during different time intervals, using an electrolyte solution containing a low concentration of cobalt sulfate. The intention was to investigate the details of the deposition process (and the dissolution process) and the resulting magnetic properties of the Co deposits on graphene. During and after electrodeposition, in-situ magnetic measurements were performed using an (AGFM). These were followed by ex situ morphological analysis of the samples with ${\Delta}t_{DEP}$ 30 and 100 s by atomic force microscopy in the non-contact mode on pristine CVD graphene/$SiO_2$/Si. We demonstrate that it is possible to electrodeposit Co onto graphene, and that in-situ magnetic measurements can also help in understanding details of the deposition process itself. The results show that the Co deposits are ferromagnetic with decreasing coercivity ($H_C$) and demonstrate increasing magnetization on saturation ($M_{SAT}$) and electric signal proportional to remanence ($M_r$), as a function of the amount of the electrodeposited Co. It was also found that, after the end of the dissolution process, a certain amount of cobalt remains on the graphene in oxide form (this was confirmed by X-ray photoelectron spectroscopy), as suggested by the magnetic measurements. This oxide tends to exhibit a limited asymptotic amount when cycling through the deposition/dissolution process for increasing deposition times, possibly indicating that the oxidation process is similar to the graphene surface chemistry.