• Title/Summary/Keyword: Si absorption

Search Result 630, Processing Time 0.024 seconds

Fabrication of MILC poly-Si TFT using scanning-RTA and light absorption layer

  • Pyo, Yu-Jin;Kim, Min-Sun;Kim, Young-Soo;Song, Nam-Kyu;Joo, Seung-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.307-309
    • /
    • 2005
  • We investigated light absorption layer effect on metal-induced lateral crystallization (MILC) growth rate and MILC thin films transistors (TFTs). As annealing method, we used scanning-rapid thermal annealing (RTA). MILC growth rate which was crystallized by light absorption layer and using scanning-RTA was 3 times than normal MILC which was without light absorption layer growth rate. Also we compared MILC TFTs characteristics which were combined to light absorption layer with conventional MILC TFTs. After scanning-RTA process, MILC-TFTs which were with light absorption layer were superior to conventional MILC-TFTs. With this new MILC-TFTs structure, we could reduced crystallization time and obtain good electrical properties.

  • PDF

Fabrication and Characterization of Hydrogen Getter Based on Palladium Oxide Doped Nanoporous SiO2/Si Substrate (PdOx가 도핑된 나노 기공구조 SiO2/Si 기반의 수소 게터 제작 및 특성평가)

  • Eom, Nu Si A;Lim, Hyo Ryoung;Choi, Yo-Min;Jeong, Young-Hun;Cho, Jeong-Ho;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.573-577
    • /
    • 2014
  • The existing metal getters are invariably covered with thin oxide layers in air and the native oxide layer must be dissolved into the getter materials for activation. However, high temperature is needed for the activation, which leads to unavoidable deleterious effects on the devices. Therefore, to improve the device efficiency and gas-adsorption properties of the device, it is essential to synthesize the getter with a method that does not require a thermal activation temperature. In this study, getter material was synthesized using palladium oxide (PdOx) which can adsorb $H_2$ gas. To enhance the efficiency of the hydrogen and moisture absorption, a porous layer with a large specific area was fabricated by an etching process and used as supporting substrates. It was confirmed that the moisture-absorption performance of the $SiO_2/Si$ was characterized by water vapor volume with relative humidity. The gas-adsorption properties occurred in the absence of the activation process.

Electrical Properties of Laser CVD Silicon Nitride Film (Laser CVD SiN막의 전기적 특성)

  • Kim, Yong-Woo;Kim, Sang-Wook;Park, Jong-Wook;Kim, Chun-Sub;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.85-87
    • /
    • 1990
  • Silicon nitride film was deposited on a silicon wafer using a laser CVD(LCVD) technique, which is based on direct photolysis of $SiH_4/NH_3$ gas mixture by ArF laser beam(${\lambda}=193\;nm$). The refractive index of deposited SiN film is 1.9 at the temperature of $300^{\circ}C$, pressure of 5 torr. The breakdown field strength of LCVD SiN film was 10MV/cm. In IR spectrum, the absorption peak of Si-H, N-H, and Si-N is detected and it is shown that hydrogen is included in SiN film. From analysis of absorption band. it is calculated that density of Si-H, N-H bond is higher than $5{\times}10^{22}cm^{-3}$. LCVD MIS capacitor and PECVD MIS capacitor have injection-type hysteresis but it is known that hysteresis loss of LCVD MIS capacitor is smaller than that of PECVD MIS capacitor. It means that Interface state density of LCVD capacitor is smaller than that of PECVD capacitor. In addition, the flatband voltage($V_{FB}$) of LCVD is smaller than that of PECVD capacitor. And it means that fixed charged density($Q_{FIX}$) of LCVD capacitor is smaller than that of PECVD MIS capacitor.

  • PDF

Characteristics and Structural Evolution of Low-Silica Calcium Aluminate Glasses (소량의 $SiO_2$가 첨가된 Calcium Aluminate 유리의 특성 및 구조)

  • Shim, Sung-Han;Heo, Jong;Kim, You-Song
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.695-702
    • /
    • 1994
  • Current study was undertaken to explain the structural evolution and corresponding changes in the properties of calcium aluminate glasses with the variation of SiO2 doping concentration. Calcium aluminate glasses in the compositional ranges of (100-x)(0.6CaO+0.4Al2O3)+xSiO2(where x=0~60) were fabricated. DTA analysis confirmed an anomalous behavior in glass transition temperature (Tg) with the maximum of 887$^{\circ}C$ and minimum of 859$^{\circ}C$ when x=5 and 50, respectively. densities and refractive indices monotonically decreased with increasing SiO2 content and IR transmitting cutoff shifted to shorter wavelength side when the amount of added SiO2 exceeded 5 mole%. IR fundamental vibration absorption peaks showed the change that NBOs were inclined to SiO4 tetrahedron in the low-silica region and NBO per SiO4 tetrahedra changed from 2 to 0 with increasing silica content. Based on the analysis of IR fundamental vibration absorption peaks, the model of the structural change can be proposed in three step: 1) SiO4 scavenged the NBOs located at AlO4-tetrahedra, which resulted in the increased of Tg values, 2) NBOs located in the main network again with a decrease in Tg, and 3) dominated by the decrease in the relative amount of NBOs in the glass system, where Tg re-increased.

  • PDF

Bulk and Surface Reactions of Atomic H with Crystalline Si(100)

  • 조삼근
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.175-175
    • /
    • 2000
  • Si(100) surfaces were exposed to gas-phase thermal-energy hydrogen atoms, H(g). We find that thermal H(g) atoms etch, amorphize, or penetrate into the crystalline silicon substrate, depending on the employed Ts range during the H(g) exposure. We find that etching is enhanced as Ts is lowered in the 300-700K range, while amorphous silicon hydride (a-Si:H) formation dominates at a Ts below 300K. This result was well explained by the fact that formation of the etching precursor, SiHx(a), and amorphization are both facilitated by a lower Ts, whereas the final step for etching, SiH3(a) + H(g) longrightarrow SiH3(g), is suppressed at a lower Ts. we also find that direct absorption of H(g) by the crystalline bulk of Si(100) substrate occurs within a narrow Ts window of 420-530K. The bulk-absorbed hydrogen evolved out molecularly from Si(100) at a Ts 80-120K higher than that for surface monohydride phase ($\beta$1) in temperature-programmed desorption. This bulk-phase H uptake increased with increasing H(g) exposure without saturation within our experimental limits. Direct absorption of H(g) into the bulk lattice occurs only when the surface is atomically roughened by surface etching. While pre-adsorbed hydrogen atoms on the surface, H(a), were readily abstracted and replaced by D(g), the H atoms previously absorbed in the crystalline bulk were also nearly all depleted, albeit at a much lower rate, by a subsequent D(g) at the peak temperature in TPD from the substrate sequentially treated with H(g) and D(g), together with a gas phase-like H2 Raman frequency of 4160cm-1, will be presented.

  • PDF

Micromachining & Optical Properties of Li$_2$O-A1$_2$O$_3$-SiO$_2$ Glass System by Laser Treatment (레이저에 의한 Li$_2$O-A1$_2$O$_3$-SiO$_2$계 유리의 미세가공 및 광학적 특성)

  • 강원호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.43-45
    • /
    • 2001
  • For photosensitive and micro-structuring in $Li_2O-A1_2O_3-SiO_2$glasses by laser treatment, Nd:YAG laser in 355 nm and 1064 nm wavelength was irradiated to the glass to investigate fracture characterization and optical changes. The fractured glass surfaces irradiated by 1064 nm laser was observed by Scanning Electron Microscope(SEM) and optical microscope, and optical changes caused by 355 nm later was identified from absorption spectra. In this study, it could be expected that the laser treatment technology will be utilized for 3-dimensional micro-structure, internal waveguide, optical memory by optical absorption changes in glass matrix.

  • PDF

SiGe Alloys for Electronic Device Applications (실리콘-게르마늄 합금의 전자 소자 응용)

  • Lee, Seung-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2011
  • The silicon-germanium (SiGe) alloy, which is compatible with silicon semiconductor technology and has a smaller band gap and a lower thermal conductivity than silicon, has been used to fabricate electronic devices such as transistors, photodetectors, solar cells, and thermoelectric devices. This paper reviews the application of SiGe alloys to electronic devices and related technical issues. Since the SiGe alloy comprises germanium whose band gap is smaller than silicon, its band gap is also smaller than that of silicon irrespective of the ratio of silicon to germanium. This narrow band gap of SiGe enables the base thickness of bipolar transistors to decrease without a loss in current gain so that it is possible to improve the speed of bipolar transistors by adopting the SiGe-base. In addition, the conversion efficiency of solar cells is enhanced by the absorption of long-wavelength light in the SiGe absorption layer. Phonon scattering caused by the irregular distribution of alloying elements induces the lower thermal conductivity of SiGe than those of pure silicon and germanium. Because a thin film layer with a low thermal conductivity suppresses thermal conduction through a thermal sink, the SiGe alloy is considered to be a promising material for silicon-based thermoelectric systems.

Modeling of Absorption/Desorption of Fuel in Oil film on the Cylinder Liner in SI Engines (오일유막의 연료 흡수 및 방출에 관한 연구)

  • 유상석;민경덕
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.165-171
    • /
    • 1999
  • An oil layer fuel absorption /desorption modeling was developed. Multi-component fuel model has showed more reasonable condition than single component model. Henry's constant which is related to solubility is the most important variable in the oil layer absorption/desorption mechanism. The oil segments close to the top of the cylinder liner have more significant contribution to the fuel absorption and desorption process than other oil segments. At the warmed-up condition, the effect of the engine speed on the precent fuel absorbed/desorbed is minimal. But at low il film temperature, percent of fuel abosrbed/desorbed is decreased with increasing the engine speed because of low value of molecular diffusion coefficient of fuel. The amount of fuel trapped in the piston crevice is from 2 to 2.3 times larger than that of fuel in the oil fim. However, fuel form oil film slowly desorbs into the combustion chamber compared with fuel from the piston crevices when the engines is cold.

  • PDF