• Title/Summary/Keyword: Si Particle

Search Result 1,050, Processing Time 0.031 seconds

Production of $PGE_2$ and $H_2O_2$ from Alveolar Macrophage Stimulated by Silica (유리규산에 의하여 자극된 폐포 대식세포의 $H_2O_2$$PGE_2$ 생성)

  • Lee, Seong-Beom;Choi, Moon-Ju;Park, Won-Sang;Lee, Jung-Yong;Chae, Gue-Tae;Kim, Sang-Ho;Kim, Choo-Soung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.5
    • /
    • pp.513-520
    • /
    • 1994
  • Background: The pathogenesis of silicosis has been focused on the interaction between alveolar macrophages and silica particle. Although fibrosis in silicosis has been studied extensively, the mechanism is still not fully understood. There is increasing evidence that monokines and arachidonic acid metabolites macrophage are involved in pathogenesis of silicosis. Recently, it was reported that prostaglandin E2 produced from macrophage counteracts the stimulatory effects of other monokines on fibroblast proliferation or collagen production. Until now, it was remained uncertain by which mechanism silica particle may activate alveolar macrophage to an enhanced release of prostaglandin E2. Methods: In order to investigate the relationship between the activity of alveolar macrophage and the production of $PGE_2$ from activated alveolar macrophage, the authors measured hydrogen peroxide and $PGE_2$ from alveolar macrophages activated by silica in vitro and from alveolar macrophages in the silicotic nodules from rat. Experimental silicosis was induced by intratracheal infusion of silica($SiO_2$) suspended in saline(50 mg/ml) in Sprague-Dawley rats. Results: produced by 1) The silicotic nodules with fibrosis were seen from the sections of rat lung at 60 days after intratracheal injection with 50 mg aqueous suspension of silica(Fig. 1). 2) In vitro, silica caused the dose dependent increase of hydrogen peroxide(p<0.05, Fig. 2A) and $PGE_2$(p>0.05, Fig. 2B) release from alveolar macrophages. Alveolar macrophages from rat with silicotic nodules released more hydrogen peroxide and $PGE_2$ than those of control group(p<0.05, Fig. 3). Conclusion: These results suggest that silica particle could activate macrophage directly and enhanced the release of $PGE_2$ and hydrogen peroxide from the alveolar macrophage.

  • PDF

Air Gasification Characteristics of Unused Woody Biomass in a Lab-scale Bubbling Fluidized Bed Gasifier (미이용 산림바이오매스 및 폐목재의 기포 유동층 Air 가스화 특성 연구)

  • Han, Si Woo;Seo, Myung Won;Park, Sung Jin;Son, Seong Hye;Yoon, Sang Jun;Ra, Ho Won;Mun, Tae-Young;Moon, Ji Hong;Yoon, Sung Min;Kim, Jae Ho;Lee, Uen Do;Jeong, Su Hwa;Yang, Chang Won;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.874-882
    • /
    • 2019
  • In this study, the gasification characteristics of four types of unused woody biomass and one waste wood in a lab-scale bubbling fluidized bed gasifier (Diameter: 0.11 m, Height: 0.42 m) were investigated. Effect of equivalence ratio (ER) of 0.15-0.3 and gas velocity of $2.5-5U_0/U_{mf}$ are determined at the constant temperature of $800^{\circ}C$ and fuel feeding rate of 1 kg/h. The silica sand particle having an average particle size of $287{\mu}m$ and olivine with an average particle size of $500{\mu}m$ were used as the bed material, respectively. The average product gas composition of samples is as follows; $H_2$ 3-4 vol.%, CO 15-16 vol.%, $CH_4$ 4 vol.% and $CO_2$ 18-19 vol.% with a lower heating value (LHV) of $1193-1301kcal/Nm^3$ and higher heating value (HHV) of $1262-1377kcal/Nm^3$. In addition, it was found that olivine reduced most of C2 components and increased $H_2$ content compared to silica sand, resulting in cracking reaction of tar. The non-condensable tar decreases by 72% ($1.24{\rightarrow}0.35g/Nm^3$) and the condensable tar decreases by 27% ($4.4{\rightarrow}3.2g/Nm^3$).

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.

Characteristics of Continuous Preparation of ZnO Powder in a Micro Drop/bubble Fluidized React (마이크로 액적/기포 유동반응기에서 ZnO 입자의 연속제조 특성)

  • Lee, Seung Ho;Yang, Si Woo;Lim, Dae Ho;Yoo, Dong Jun;Lee, Chan Ki;Kang, Gyung Min;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.597-602
    • /
    • 2015
  • Characteristics of continuous preparation of ZnO powder were investigated in a micro drop/bubble fluidized reactor of which diameter and height were 0.03 m and 1.5 m, respectively. The flow rate of carrier gas for transportation of precursors to the reactor was 6.0 L/min and the concentration of Zn ion in the precursor solutions was 0.4 mol/L, respectively. Effects of reaction temperature (973 K~1,273 K) and flow rate of micro bubbles (0~0.4 L/min) on the pore characteristics of prepared ZnO powder were examined. The optimum reaction temperature for the maximum porosity in the ZnO powder was 1,073 K within this experimental condition. The mean size of ZnO powder prepared continuously in the reactor decreased but the surface of the powder became smooth, with increasing reaction temperature. The injection of micro bubbles into the reactor could enhance the formation of pores in the powder effectively, and thus the mean BET surface area could be increased by up to 58%. The mean size of prepared ZnO powder was in the range of $1.25{\sim}1.75{\mu}m$ depending on the reaction temperature.

Preparation of TiO2Powder by Hydrothemal Precipitation Method and their Photocatalytic Properties (수열합성법에 의한 TiO2 분말 제조와 광촉매 특성)

  • Kim, Seok-Hyeon;Jeong, Sang-Gu;Na, Seok-En;Kim, Si-Young;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.195-202
    • /
    • 2013
  • $TiO_2$ powders were prepared from titanium (IV) sulfate ($Ti(SO_4)_2$) solution using ammonia solution at low reaction temperature ($80{\sim}100^{\circ}C$) and atmospheric pressure by hydrothermal precipitation method without calcination. The effect of reaction conditions, such as reaction temperature, initial concentration of titanium (IV) sulfate ($Ti(SO_4)_2$) solution, pH of mixture solution and the physical properties of the prepared $TiO_2$, such as crystallite structure, crystallite size were investigated. The photocatalytic activity of prepared $TiO_2$ was tested by the photolysis of brilliant blue FCF (BB-FCF) under the UV and the analysis of UV-VIS diffuse reflectance spectroscopy (DRS). The physical properties of prepared $TiO_2$ were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectrometer (PL), particle size distribution measurements. The crystallite size and crystallinity of prepared $TiO_2$ increased with increasing titanium (IV) sulfate ($Ti(SO_4)_2$) concentration, but photocatalytic activity decreased. The crystallite size decreased with increasing pH of mixture solution, but photocatalytic activity increased. The crystallinity and photocatalytic activity increased with increasing reaction temperature. The results showed that anatase type $TiO_2$ could be prepared by hydrothermal precipitation method using titanium (IV) sulfate ($Ti(SO_4)_2$) solution and ammonia solution at low reaction temperature and atmospheric pressure without calcination.

Preparation and Characterization of Iron Phthalocyanine Thin Films by Vacuum Sublimation (진공증착법을 이용한 철프탈로시아닌 박막의 합성과 그 특성)

  • Jee, Jong-Gi;Lee, Jae-Gu;Hwang, Dong-Uk;Lim, Yoon-Mook;Yang, Hyun-Soo;Ryu, Haiil;Park, Ha-Sun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.644-651
    • /
    • 1999
  • In this experiment the Iron phthalocyanine (FePc) films on Si-wafer and alumina pallet were prepared using vacuum sublimation with conditions of changing reaction time, temperature, and deposition rate. Then, some samples were annealed following annealing. Techniques such as XRD, SEM, and resistance measurement method, were dedicated to characterize the changes of surface structure, phase transformation and electric resistance sensitivity in accordance with change of film thickness. In proportion to the decrease of deposition temperature from $370^{\circ}C$ to $350^{\circ}C$, intensities of (200), (011), (211) and (114) planes of $\alpha$-phase were decreased and (100) plane of $\beta$-phase were appeared. The film thickness were controlled by regulating the volume of precursor material during rapid deposition. As a result, it was observed that crystalline particle size had been increased according to the increase of film thickness and $\alpha$-phase transformed to $\beta$-phase. In consequence of measuring the crystallinity of films annealed between $150^{\circ}C$ and $350^{\circ}C$, $\alpha$- to $\beta$-phase transformation was appeared to begin at $150^{\circ}C$ and completely transformed to $\beta$-phase at $350^{\circ}C$. Electric resistance sensitivity of FePc film to $NO_x$ gas along temperature change of FePc films was observed to be more stable with the decrease of the film thickness.

  • PDF

Characteristics of Ambient Particulate Matter in Gwangju (광주지역 먼지 특성에 관한 연구)

  • Seo, Gwang-Yeob;Kim, Seung-Ho;Lee, Kyoung-Seok;Min, Kyoung-Woo;Seo, Hee-Jeong;Kang, Yeong-Ju;Paik, Ke-Jin;Moon, Young-Woon;Shin, Dae-Yewn
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.2
    • /
    • pp.108-117
    • /
    • 2010
  • In this study, ambient particulate matter ($PM_{2.5}$ and $PM_{10}$) levels were measured and their chemical and physical properties were characterized. Two sites in Gwangju were sampled once a month from December 2008 to November 2009. The annual mean concentrations of $PM_{2.5}$ and $PM_{10}$ were $26.9\;{\mu}g/m^3$ and $46.3\;{\mu}g/m^3$, respectively, in Nongseongdong and $26.1\;{\mu}g/m^3$ and $44.8\;{\mu}g/m^3$, respectively, in Duam-dong. $PM_{2.5}$ levels were 1.8 times higher than the USA Environmental Protection Agency (EPA) national ambient air quality standard for $PM_{2.5}$ ($15\;{\mu}g/m^3$). The average $PM_{2.5}/PM_{10}$ ratio of 0.58 suggested that $PM_{2.5}$ is a significant component of the ambient particle pollution. The order of concentration of metallic elements in $PM_{2.5}$ and $PM_{10}$ was Si > Al > Fe > Zn > Pb > Cu > Mn. Cd was not detected. The earth crustal enrichment factors for Cr, Cu, Pb and Zn in $PM_{2.5}$ were higher than those in $PM_{10}$. When the earth crustal enrichment factors for Cr, Cu, Pb and Zn were higher than 10, this suggested influence from anthropogenic sources. The soil contribution ratios for $PM_{2.5}$ and $PM_{10}$ were 11.3% and 16.4%, respectively, and were higher in the fall and winter. Anions (${SO_4}^{-2}$, ${NO_3}^-$, and $Cl^-$) comprise 28.7% of $PM_{2.5}$ and 21.4% of $PM_{10}$. The correlation coefficient of Zn-Fe, Mn-Cu, Fe-Cu and Fe-Mn in $PM_{2.5}$ was high in the sampling sites, and metallic elements were primarily from anthropogenic sources such as fuel combustion and vehicle emissions.

Comparative Analysis of Heat Sink and Adhesion Properties of Thermal Conductive Particles for Sheet Adhesive (열전도성 입자를 활용한 시트용 점착제의 점착 특성과 방열특성 연구)

  • Kim, Yeong Su;Park, Sang Ha;Choi, Jeong Woo;Kong, Lee Seong;Yun, Gwan Han;Min, Byung Gil;Lee, Seung Han
    • Textile Coloration and Finishing
    • /
    • v.28 no.1
    • /
    • pp.48-56
    • /
    • 2016
  • Improvement of heat sink technology related to the continuous implementation performance and extension of device-life in circumstance of easy heating and more compact space has been becoming more important issue as multi-functional integration and miniaturization trend of electronic gadgets and products has been generalized. In this study, it purposed to minimize of decline of the heat diffusivity by gluing polymer through compounding of inorganic particles which have thermal conductive properties. We used NH-9300 as base resin and used inorganic fillers such as silicon carbide(SiC), aluminum nitride(AlN), and boron nitride(BN) to improve heat diffusivity. After making film which was made from 100 part of acrylic resin mixed hardener(1.0 part more or less) with inorganic particles. The film was matured at $80^{\circ}C$ for 24h. Diffusivity were tested according to sorts of particles and density of particles as well as size and structure of particle to improve the effect of heat sink in view of morphology assessing diffusivity by LFA(Netzsch/LFA 447 Nano Flash) and adhesion strength by UTM(Universal Testing Machine). The correlation between diffusivity of pure inorganic particles and composite as well as the relation between density and morphology of inorganic particles has been studied. The study related morphology showed that globular type had superior diffusivity at low density of 25% but on the contarary globular type was inferior to non-globular type at high density of 80%.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

Improvement of Bioavailability for Lovastatin using Self-microemulsifying Drug Delivery System (미세유화약물송달시스템을 이용한 로바스타틴의 생체이용률 향상)

  • Yoon, Bok-Young;Kang, Bok-Ki;Jeung, Sang-Young;Lee, Young-Won;Lee, Si-Beum;Hwang, Sung-Joo;Yuk, Soon-Hong;Khang, Gil-Son;Lee, Hai-Bang;Cho, Sun-Hang
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.4
    • /
    • pp.267-275
    • /
    • 2002
  • A self-microemulsifying drug delivery system (SMEDDS) was developed to increase the dissolution rate, solubility, and ultimately bioavailability of a poorly water soluble drug, lovastatin. SMEDDS was thε mixtures of oils, surfactants, and cosurfactants, which emulsify under conditions of gentle agitation, similar to those which would be encountered in the gastro-intestinal (GI) tract. Various types of self-emulsifying formulations were prepared using four types of oil (Capryol 90, Lauroglycol 90, Labrafil M 1944 CS and Labrafil M 2125), two surfactants (Cremophor EL and Tween 80), and three cosurfactants (Carbitol, PEG 400 and propylene glycol). Thε efficiency of emulsification was studied using a laser diffraction size analyzer to determine particle size distributions of the resultant emulsions. Optimized formulations selected for bioavailability assessment were Carpryol 90 (40%), Cremophor EL (30%) and Carbitol (30%). SMEDDS containing lovastatin (20 mg and 5 mg) were compared to a conventional lovastatin tablet $(Mevacor^{\circledR},\;20\;mg/tab)$ by the oral administration as prefilled hard gelatin capsules to fasted beagle dogs for in vivo study. The arεa under the serum concentration-time curve from time zero to the last measured time in serum, $AUC_{0{\rightarrow}24h}$, was significantly greater in SMEDDS, suggesting that bioavailability increase 130% and 192% by the SMEDDS, respectively. The self-emulsifying formulations of lovastatin afforded the improvement in absolute oral bioavailability relative to previous data of lovastatin tablet formulation. These data indicate the utility of dispersed self-emulsifying formulations for the oral delivery of lovastatin and potentially other poorly absorbed drugs.