• Title/Summary/Keyword: Si 분포

Search Result 1,177, Processing Time 0.034 seconds

Daily Variation and Distribution of Anions and Cations in the Aerosols of Jeju Island (제주지역의 대기질 중의 음이온 및 양이온의 분포와 변이성)

  • Sin, Bangsik;Lee, Hyung H.;Lee, Keun Kwang
    • Journal of Naturopathy
    • /
    • v.7 no.1
    • /
    • pp.10-19
    • /
    • 2018
  • The purpose of this study was to investigate the distribution and variation of the anion and cation number in the aerosols at 16 sites in the Jeju area. The average value of anion counts was raged from 449.35 ions/cm3 at Jeju city to 3471.25 ions/cm3 in the Chunjiyeon falls. In order, the lowest Jeju-si < hamdeok < 1100 m < farm < gyorae A < saryoni < jeolmul < gyorae B < geomunoreum < halla forest < hallasan garden < seongpanak < dongbaeksan < jeongbang < wonyang, respectively. There was statistically significant difference between the anion counts of the measured values in the order of elevation. The mean value of cation measurements was from 90 ions/cm3 for Cheonjiyeon, to 729.8 ions/cm3 for Halla forest garden, which showed the highest value. In order, the lowest 729.8 ions/cm3 of Cheonjiyeon < 1100 m < dongbaeksan < Jeju-si < saryoni < wonyang < seongpanak < hamdeok < jeongbang < gyorae B < jeolmul < Farm < gyorae A < halla forest < geomun and < halla garden, respectively. The geographically low area and the high area were measured low and difference in the two ions. The differences between the content of the anion, cation and/or altitude were significant each other in the variance analysis. The correlation between the anion and cation content and/or altitude was statistically significant (r=.396, p<.001). In conclusion, the result of showing the temporal distribution and variation of the anion and cation content in the aerosols in Jeju island forests provides important information for healthcare.

  • PDF

Habitat characteristics and prediction of potential distribution according to climate change for Macromia daimoji Okumura, 1949 (Odonata: Macromiidae) (노란잔산잠자리(Macromia daimojiOkumura, 1949)의 서식지 특성 및 기후변화에 따른 잠재적 분포 예측)

  • Soon Jik Kwon;Hyeok Yeong Kwon;In Chul Hwang;Chang Su Lee;Tae Geun Kim;Jae Heung Park;Yung Chul Jun
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.21-31
    • /
    • 2024
  • Macromia daimoji Okumura, 1949 was designated as an endangered species and also categorized as Class II Endangered wildlife on the International Union for Conservation of Nature (IUCN) Red List in Korea. The spatial distribution of this species ranged within a region delimited by northern latitude from Sacheon-si(35.1°) to Yeoncheon-gun(38.0°) and eastern longitude from Yeoncheon-gun(126.8°) to Yangsan-si(128.9°). They generally prefer microhabitats such as slowly flowing littoral zones of streams, alluvial stream islands and temporarily formed puddles in the sand-based lowland streams. The objectives of this study were to analyze the similarity of benthic macroinvertebrate communities in M. daimoji habitats, to predict the current potential distribution patterns as well as the changes of distribution ranges under global climate change circumstances. Data was collected both from the Global Biodiversity Information Facility (GBIF) and by field surveys from April 2009 to September 2022. We adopted MaxEnt model to predict the current and future potential distribution for M. daimoji using downloaded 19 variables from the WorldClim database. The differences of benthic macroinvertebrate assemblages in the mainstream of Nakdonggang were smaller than those in its tributaries and the other streams, based on the surrounding environments and stream sizes. MaxEnt model presented that potential distribution displayed high inhabiting probability in Nakdonggang and its tributaries. Applying to the future scenarios by Intergovernmental Panel on Climate Change (IPCC), SSP1 scenario was predicted to expand in a wide area and SSP5 scenario in a narrow area, comparing with current potential distribution. M. daimoji is not only directly threatened by physical disturbances (e.g. river development activities) but also vulnerable to rapidly changing climate circumstances. Therefore, it is necessary to monitor the habitat environments and establish conservation strategies for preserving population of M. daimoji.

Steam Reforming of Methanol for the Production of Hydrogen (수소제조를 위한 메탄올의 수증기 개질반응)

  • Kim, Sang-Chai;Jung, Chan-Hong;Yu, Eui-Yeon
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.261-268
    • /
    • 1996
  • Various $Cu/SiO_2$ catalysts with copper concentration ranging from 0 to 50wt% were prepared by kneading method for the steam reforming of methanol. These catalysts were calcined at temperatures in the range of $400^{\circ}C{\sim}900^{\circ}C$ and then reduced in a $H_2$ atmosphere in the range of $150^{\circ}C{\sim}350^{\circ}C$. Steam reforming of methanol was carried out at atmospheric pressure over a temperature range of $200^{\circ}C{\sim}400^{\circ}C$, steam/methanol molar ratio of 0.4~1.6 and W/F of 3~25 g.-cat.hr./mol. Characterization of the catalysts was studied using IR, BET and XRD. Using copper nitrate as a precursor for catalysts, pH in the preparation of catalysts had a great effect on the catalytic activity, but pH in the preparation of catalysts, calcination temperature, and reducing temperature in $H_2$ atmosphere had no effect on the product distribution. Optimum copper concentration, calcination temperature and reducing temperature were 40wt%, $700^{\circ}C$ and $300^{\circ}C$, respective)y. Reaction temperature for maximum $H_2$ production was $275^{\circ}C$, and the formation of methane which lowered quantity and quality of $H_2$ would be inhibited below $275^{\circ}C$. $Cu^{\circ}-Cu_2O$ might be active species in $Cu/SiO_2$ catalyst.

  • PDF

Microstructure and Strength of Class F Fly Ash based Geopolymer Containing Sodium Sulfate as an Additive (황산나트륨 첨가제에 따른 플라이애시 기반 지오폴리머의 미세구조 및 강도 특성)

  • Jun, Yubin;Oh, Jae-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.443-450
    • /
    • 2015
  • This paper presents an investigation of the mechanical and microstructural properties of Class F fly ash based geopolymer containing sodium sulfate as an additive. Sodium sulfate was used as an chemical additive at the dosage levels of 0, 2, 4, and 6wt% of fly ash. Sodium hydroxide and sodium silicate solutions were used to activate fly ash. The compressive strengths of geopolymer pastes were measured at the age of 28 days. The microstructures of the geopolymer pastes were examined using XRD, MIP and SEM tests. The additions of 2wt% and 4wt% sodium sulfate produced geopolymers with high strength, while increasing the dosage of levels to 6% resulted in almost no changes in strength, comparing with the control geopolymer. The optimum increase in strength was obtained with the addition of 4wt% sodium sulfate. As the amount of sodium sulfate is increased, no additional crystalline phase was detected and no change of amorphous phase indicated despite the change in the strength development. The increase in the strength was due to the change of pore size distribution in samples. As addition of sodium sulfate altered the morphologies of reactive productions and Si/Al ratios of the reaction products, the strengths were thus affected. It was found that the strengths of geopolymer were larger for lower Si/Al ratios of reaction products formed in samples. The optimal amount of sodium sulfate in the fly ash based geopolymer helps to improve mechanical properties of the geopolymer, on the other hand, the high percentage of sodium sulfate could exist as an impurity in the geopolymer and hinder the geopolymer reaction.

The Characterization of Spherical Perticles in Steam Generator Sludge (증기발생기 슬러지 중 구형입자의 특성 조사)

  • Pyo, Hyung-Yeal;Park, Yang-Soon;Park, Sun-Dal;Park, Kyoung-Kyun;Song, Byung-Chul;Park, Yong-Joon;Jee, Kwang-Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.59-64
    • /
    • 2006
  • Ion exchange resin particles should not be found in steam generator(S/G) sludge. The suspicious spherical resin particles observed in S/G sludge sample were characterized for particle size distribution under optical microscope using the micro-technique, for element analysis by the electron probe micro analysis (EPMA), and for molecular identification by the IR spectroscopy. The particle sizes are distributed from 1 to $200{\mu}m$ for the sludge, while 40 to $500{\mu}m$ for the spherical resin particles. The results of the elemental analysis showed different major impurities: Si, Al, Mn, Cr, Ni, Zn and Ti for the sludge particles, while Si, Cu, Zn for the spherical resin particles. However, both particles contain Fe as a matrix of magnetite $(Fe_3O_4)$. IR spectrum of the spherical particles was not quite similar to the IR spectrum of ion exchange resins used in S/G system. These results indicate that the spherical particles are not related to ion exchange resin particles and may be formed by the process of the sludge formation.

  • PDF

Estimation of Contamination Level of Sediments at the Below of Busan Gwang-an Bridge (부산 광안대교 하부 퇴적토 오염도 평가)

  • Kim, Seog-Ku;Ahn, Jae-Whan;Kang, Sung-Won;Yun, Sang-Leen;Lee, Jungwoo;Lee, Jea-Keun;Lim, Jun-Heok;Kim, Dong-Soo;Lee, Tae-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.809-814
    • /
    • 2013
  • In this study, physical properties and heavy metal contents of sediments obtained from the bottom of Gwangan bridge were measured to determine pollution level of the sediments. From the results of the oxide contents of the sediments, $SiO_2$ was decreased as the sampling points became more distant from the stream of river. On the contrary, CaO showed opposition aspect to $SiO_2$. Ignition loss of sediments ranged from 7.2 and 14.3% and 0.9 and 5.5% for TOC. For EPA guidelines of ignition loss, all sampling points were classified as heavily polluted areas. When TOC was considered, all areas were classified as lowest effect level except for GW7 where classified as no effect level. All areas were free of heavy metal contamination evaluated by USEPA and Canadian guidelines. However, all areas were classified as heavily contaminated areas due to the high value of ignition loss when USEPA was used.

Properties of Cenosphere Particle in the Fly Ash Generated from the Pulverized Coal Power Plant (석탄화력 발전소에서 생성되는 석탄회에서 Cenosphere 입자의 특성에 관한 연구)

  • Lee, Jung-Eun;Lee, Jae-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1881-1891
    • /
    • 2000
  • Cenosphere particles of different fly ash formed at the pulverized coal power plant were hollow sphere or filled with small particles inside solid particles. And size was relatively larger than other fly ash particles as well as specific gravity was small to suspend in the water. In this paper, it was demonstrated to contain a variety of morphological particle type, and the physical and chemical properties related to the cenosphere and fly ash particles. Furthermore it was estimated the possibility to reuse the cenosphere particles on the base of cenosphere properties. Cenosphere formation resulted from melting of mineral inclusion in coal, and then gas generation inside the molten droplet. As the aluminosilicate particle was progressively heated, a molten surface layer developed around the solid core. Further heating leaded to cause the formation of fine particles at the core. The mass median diameter(MMD) of cenosphere particles was $123.11{\mu}m$ and the range of size distribution was $100{\sim}200{\mu}m$ with single modal. It was represented that specific density was $0.67g/cm^3$ fineness was $1135g/cm^3$. The chemical components of cenosphere were similar to other fly ash including $SiO_2$, $Al_2O_3$, but the amount of the chemical component was different respectively. In the case of fly ash, $SiO_2$ concentration was 54.75%, and $Al_2O_3$ concentration was 21.96%, so this two components was found in 76.71% of the total concentration. But in the case of cenosphere, it was represented that $SiO_2$ concentration was 59.17% and $Al_2O_3$ concentration was 30.16%, so this two components was found in 89.33% of the total concentration. Glassy component formed by the aluminosilicate was high in the cenosphere, so that it was suitable to use insulating heat material.

  • PDF

Hydrothermal Mechanism of Na-A Type Zeolite from Natural Siliceous Mudstone (규질 이암으로부터 Na-A형 제올라이트 수열합성 반응기구에 대한 연구)

  • Bae, In-Kook;Jang, Young-Nam;Chae, Soo-Chun;Kim, Byoung-Gon;Ryu, Kyoung-Won;Lee, Sung-Ki
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.223-229
    • /
    • 2007
  • The mechanism of hydrothermally synthesizing Na-A zeolite from siliceous mudstone at a $Na_2O/SiO_2$ ratio of 0.6, a $SiO_2/Al_2O_3$ 2.0 and a $H_2O/Na_2O$ 119 has been observed by IR, DTA, XRD and SEM. This mudstone is a tertiary periodic sedimentary rock and widely spreads around the Pohang area. In the early hydrothermal synthesis at $80^{\circ}C$ in an autoclave, sodium silicate and sodium aluminate were found to be preferentially reacted to generate Na-A type zeolite. Gibbsite and bayerite were also formed due to the presence of extra aluminum oxide in the feedstock. As reaction time in-creased up to 50 h, residual sodium aluminatewas reacted with siliceous mudstone, causing the Na-A zeolite crystal to grow and the hydroxylsodalite to generate. Therefore, in the $14{\sim}50\;h$ synthetic time, Na-A zeolite and hydroxylsodalite were formed. Also, if reaction time passed over 50 h, a part of the Na-A zeolite was finally redissolved and reacted with hydroxylsodalite to synthesize Na-P zeolite, generating porous surface of Na-A zeolite and disappearing hydroxylsodalite.

3-D Geological Structure Interpretation by the Integrated Analysis of Magnetotelluric and Gravity Model at Hwasan Caldera (자기지전류 및 중력 모델의 복합해석을 통한 화산칼데라 지역의 3차원 지질구조 해석)

  • Park, Gye-Soon;Lee, Chun-Ki;Yang, Jun-Mo;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.548-559
    • /
    • 2011
  • 3-D Multi-geophysical surveys were carried out around the Hwasan caldera at the Euisung Sub-basin. To overcome the limitations of resolutions in previous studies, dense gravity data and magnetotelluric (MT) data were obtained and analyzed. In this study, the independent inversion models from gravity and MT data were integrated using correlation and classification approaches for 3-D imaging of the geologic structures. A Structure Index (SI) method was proposed and applied to the integration and classification analyses. This method consists of Type Angle (TA) and Type Intensity (TI) values, which are estimated by the spatial correlation and abnormality of the physical properties. The SI method allowed the classification analysis to be effectively performed. Major findings are as follows: 1) pyroclastic rocks around the central area of the Hwasan caldera with lower density and resistivity than those of neighboring regions extended to a depth of around 1 km, 2) intrusive igneous rocks with high resistivity and density were imaged around the ring fault boundary, and 3) a basement structure with low resistivity and high density, at a depth of 3-5 km, was inferred by the SI analysis.

Weathering Properties in Deposits of Fluvial Terrace at Bukhan River, Central Korea (북한강 하안단구 퇴적층의 풍화 특성)

  • 이광률
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.3
    • /
    • pp.425-443
    • /
    • 2004
  • Fluvial terraces is poorly developed along Bukhan River in Central Korea. Altitude from riverbed of T1 terraces are 18-29m, T2 terraces 2539m, respectively. Rubification index of T2 is 0.66, T1 is 0.54, and thickness of gravel weathering rind on gneiss of T2 are 14.0mm, granites of T2 are $\infty$, gneiss of T1 are 5.0mm and granites of T2 are 8.0mm, because weathering in deposits of T2 terraces, older than T1, is severer than T1 terraces. Since deposits in T2 have more active and longer weathering than T1, SiO$_2$/Al$_2$O$_3$ is 3.32 in T2 and 4.06 in T1, and SiO$_2$/R$_2$O$_3$ is 2.64 in T2 and 3.19 in T1. CIA(Chemical Index of Alteration) is 87.85% in T2 and 85.88% in T1. Kaolinite and halloysite are founded in deposits of T2 indicating high weathering, and are founded gibbsite made tv eluviation of kaolinite. However, deposits of T1 have no kaolinite, and are found plagioclase, weak mineral in weathering process. Comparing to previous researches by estimated age as altitude from riverbed, rubification index, thickness of gravel weathering rind, element contents and mineral composition, forming age of T2 terraces in Bukhan River are estimated in marine oxygen isotope stage 6 (130-190ka), and T1 terraces are marine oxygen isotope stage 4(59-74ka).