• 제목/요약/키워드: Si(silicon)

검색결과 3,697건 처리시간 0.034초

pH 조건에 따른 기공성 실리콘의 나노구조 및 광학적 특성의 변화 (Variation of the Nanostructural and Optical Features of Porous Silicon with pH Conditions)

  • 김효한;조남희
    • 한국세라믹학회지
    • /
    • 제50권4호
    • /
    • pp.294-300
    • /
    • 2013
  • The effect of chemical treatments of porous silicon in organic solvents on its nanostructural and optical features was investigated. When the porous Si was dipped in the organic solvent with various PH values, the morphological, chemical, and structural properties of the porous silicon was sensitively affected by the chemical conditions of the solvents. The size of silicon nanocrystallites in the porous silicon decreased from 5.4 to 3.1 nm with increasing pH values from 1 to 14. After the samples were dipped in the organic solvents, the Si-O-H bonding intensity was increased while that of Si-H bonding decreased. Photoluminescence peaks shifted to a shorter wavelength region in the range of 583 to 735 nm as the pH value increased. PL intensity was affected by the size as well as the volume fraction of the nanocrystalline silicon in the porous silicon.

리튬이온배터리용 도파민이 코팅된 실리콘/실리콘 카바이드 음극복합소재의 전기화학적 특성 (Electrochemical Characteristics of Dopamine coated Silicon/Silicon Carbide Anode Composite for Li-Ion Battery)

  • 김은비;이종대
    • Korean Chemical Engineering Research
    • /
    • 제61권1호
    • /
    • pp.32-38
    • /
    • 2023
  • 본 연구에서는 리튬 이온 배터리 용 음극활물질인 실리콘의 사이클 안정성 및 율속 특성을 개선하기 위해 도파민이 코팅된 실리콘/실리콘카바이드/카본(Si/SiC/C) 복합소재의 전기화학적 특성을 조사하였다. Stöber 법에 CTAB을 추가하여 CTAB/SiO2를 합성한 후 열 흡수제로써 NaCl을 첨가한 마그네슘 열 환원법을 통해 Si/SiC 복합소재를 제조하였으며, 도파민의 중합반응을 통해 탄소코팅을 하여 Si/SiC/C 음극소재를 합성하였다. 제조된 Si/SiC/C 음극소재의 물리적 특성 분석을 위해 SEM, TEM, XRD와 BET를 사용하였으며, 1 M LiPF6 (EC : DEC = 1 : 1 vol%) 전해액에서 리튬 이온 배터리의 사이클 안정성, 율속 특성, 순환전압전류 및 임피던스 테스트를 통해 전기화학적 특성을 조사하였다. 제조된 1-Si/SiC는 100사이클, 0.1 C에서 633 mAh/g의 방전용량을 나타냈으며, 도파민이 코팅된 1-Si/SiC/C는 877 mAh/g으로 사이클 안정성이 향상된 것을 확인할 수 있었다. 또한 5C에서 576 mAh/g의 높은 용량과 0.1 C/0.1 C 일 때 99.9%의 용량 회복 성능을 나타내었다.

스퍼터링 방법으로 증착된 실리콘 과잉 실리카 박막의 굴절률 분산 (Refractive Index Dispersion of Sputter-Deposited Silicon-Rich Silica Thin Films)

  • 진병규;최용규
    • 한국세라믹학회지
    • /
    • 제46권1호
    • /
    • pp.10-15
    • /
    • 2009
  • We have fabricated silicon-rich silica thin films via RF magnetron sputtering using a SiO target. Thickness evolution and microstructure change of such $SiO_x$ (1$SiO_x$ thin films turned out to be mainly responsible for the increase of refractive index.

보강재로 첨가된 $Si_3N_4$ Whisker와 SiC Platelet가 $\alpha/\beta$ Sialon 복합체의 상변태와 기계적 물성에 미치는 영향 (Effect of $Si_3N_4$ Whisker and SiC Platelet Addition on Phase Transformation and Mechanical Properties of the $\alpha/\beta$ Sialon Matrix Composites)

  • 한병동;임대순;박동수;이수영;김해두
    • 한국세라믹학회지
    • /
    • 제32권12호
    • /
    • pp.1417-1423
    • /
    • 1995
  • α/β sialon based composites containing silicon nitride whisker and silicon carbide platelet were fabricated by hot pressing. Effect of the reinforcing agents on the α to β phase transformation of the sialon as well as on the mechanical properties was investigated. Silicon nitride whisker and silicon carbide platelet promoted the phse transformation. TEM/EDS analysis revealed that the grain containing the whisker had 'core-rim' structure; core being high purity Si3N4 whisker and rim being β-sialon. Flexural strength of the composite decreased with the reinforcement addition which, on the other hand, improved fracture toughness of it. High temperature strength was measured at 1300℃ to be about 130 MPa lower than that measured at RT for the whisker reinforced composites.

  • PDF

Bottom Gate Microcrystalline Silicon TFT Fabricated on Plasma Treated Silicon Nitride

  • Huang, Jung-Jie;Chen, Yung-Pei;Lin, Hung-Chien;Yao, Hsiao-Chiang;Lee, Cheng-Chung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.218-221
    • /
    • 2008
  • Bottom-gate microcrystalline silicon thin film transistors (${\mu}c$-Si:H TFTs) were fabricated on glass and transparent polyimide substrates by conventional 13.56 MHz RF plasma enhanced chemical vapor deposition at $200^{\circ}C$. The deposition rate of the ${\mu}c$-Si:H film is 24 nm/min and the amorphous incubation layer near the ${\mu}c$-Si:H/silicon nitride interface is unobvious. The threshold voltage of ${\mu}c$-Si:H TFTs can be improved by $H_2$ or $NH_3$ plasma pretreatment silicon nitride film.

  • PDF

마이크로머시닝을 위한 새로운 희생층인 다결정-산화막의 특성 (Characteristics of Poly-Oxide of New Sacrificial Layer for Micromachining)

  • 홍순관;김철주
    • 센서학회지
    • /
    • 제5권1호
    • /
    • pp.71-77
    • /
    • 1996
  • 마이크로머시닝의 구조재료인 다결정 Si이 희생산화막의 영향을 받음을 고려하여 다결정 Si을 열산화시킨 다결정-산화막을 새로운 희생산화막의 재료로서 제안하고 평가하였다. 다결정-산화막상에 성장시킨 다결정 Si은 통상의 희생산화막상에 성장시키는 경우보다 grain size가 증가하였고, XRD결과를 통해 (111) texture의 증가와, 부가적인 (220) texture가 형성됨을 관찰하였다. 또한, 다결정-산화막상에 성장시킨 다결정 Si의 경우, 그 응력이 작고 균일한 분포를 나타내었다.

  • PDF

고온 동작용 SiC CMOS 소자/공정 및 집적회로 기술동향 (Technology Trend of SiC CMOS Device/Process and Integrated Circuit for Extreme High-Temperature Applications)

  • 원종일;정동윤;조두형;장현규;박건식;김상기;박종문
    • 전자통신동향분석
    • /
    • 제33권6호
    • /
    • pp.1-11
    • /
    • 2018
  • Several industrial applications such as space exploration, aerospace, automotive, the downhole oil and gas industry, and geothermal power plants require specific electronic systems under extremely high temperatures. For the majority of such applications, silicon-based technologies (bulk silicon, silicon-on-insulator) are limited by their maximum operating temperature. Silicon carbide (SiC) has been recognized as one of the prime candidates for providing the desired semiconductor in extremely high-temperature applications. In addition, it has become particularly interesting owing to a Si-compatible process technology for dedicated devices and integrated circuits. This paper briefly introduces a variety of SiC-based integrated circuits for use under extremely high temperatures and covers the technology trend of SiC CMOS devices and processes including the useful implementation of SiC ICs.

Effects of Neutral Particle Beam on Nano-Crystalline Silicon Thin Film Deposited by Using Neutral Beam Assisted Chemical Vapor Deposition at Room Temperature

  • Lee, Dong-Hyeok;Jang, Jin-Nyoung;So, Hyun-Wook;Yoo, Suk-Jae;Lee, Bon-Ju;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.254-255
    • /
    • 2012
  • Interest in nano-crystalline silicon (nc-Si) thin films has been growing because of their favorable processing conditions for certain electronic devices. In particular, there has been an increase in the use of nc-Si thin films in photovoltaics for large solar cell panels and in thin film transistors for large flat panel displays. One of the most important material properties for these device applications is the macroscopic charge-carrier mobility. Hydrogenated amorphous silicon (a-Si:H) or nc-Si is a basic material in thin film transistors (TFTs). However, a-Si:H based devices have low carrier mobility and bias instability due to their metastable properties. The large number of trap sites and incomplete hydrogen passivation of a-Si:H film produce limited carrier transport. The basic electrical properties, including the carrier mobility and stability, of nc-Si TFTs might be superior to those of a-Si:H thin film. However, typical nc-Si thin films tend to have mobilities similar to a-Si films, although changes in the processing conditions can enhance the mobility. In polycrystalline silicon (poly-Si) thin films, the performance of the devices is strongly influenced by the boundaries between neighboring crystalline grains. These grain boundaries limit the conductance of macroscopic regions comprised of multiple grains. In much of the work on poly-Si thin films, it was shown that the performance of TFTs was largely determined by the number and location of the grain boundaries within the channel. Hence, efforts were made to reduce the total number of grain boundaries by increasing the average grain size. However, even a small number of grain boundaries can significantly reduce the macroscopic charge carrier mobility. The nano-crystalline or polymorphous-Si development for TFT and solar cells have been employed to compensate for disadvantage inherent to a-Si and micro-crystalline silicon (${\mu}$-Si). Recently, a novel process for deposition of nano-crystralline silicon (nc-Si) thin films at room temperature was developed using neutral beam assisted chemical vapor deposition (NBaCVD) with a neutral particle beam (NPB) source, which controls the energy of incident neutral particles in the range of 1~300 eV in order to enhance the atomic activation and crystalline of thin films at room temperature. In previous our experiments, we verified favorable properties of nc-Si thin films for certain electronic devices. During the formation of the nc-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. The more resent work on nc-Si thin film transistors (TFT) was done. We identified the performance of nc-Si TFT active channeal layers. The dependence of the performance of nc-Si TFT on the primary process parameters is explored. Raman, FT-IR and transmission electron microscope (TEM) were used to study the microstructures and the crystalline volume fraction of nc-Si films. The electric properties were investigated on Cr/SiO2/nc-Si metal-oxide-semiconductor (MOS) capacitors.

  • PDF

Air 분위기에서 규소성형체의 질화반응 (Nitridation of Silicon Powder Compacts in Air)

  • 최석홍;안영필
    • 한국세라믹학회지
    • /
    • 제25권4호
    • /
    • pp.380-384
    • /
    • 1988
  • This investigation includes nitridation phenomena of silicon powder compacts in air. Nitridation reaction condition has been provided with using silicon nitride bed and active carbon additive. Reaction products are Oxynitride, $\alpha$-Si3N4, and $\beta$-Si3N4, Oxynitride(Si2N2O) phase in formed at outer surface layer ofsilicon powder compacts. $\alpha$-Si3N4, and $\beta$-Si3N4 are formed at inner region of powder compacts. Microstructural observation indicates that nitridation mechanism in this work is the same as conventional nitridation mechanism nitrogen gas.

  • PDF

$TiSi_2$와 다결정 실리콘에 이온주입된 As 계에서 TiAs 침전물형성에 관한 고분해능 TEM 연구 (High-Resolution TEM Study on TiAs Precipitate Formation Between $TiSi_2$ and As Doped in Poly-Silicon)

  • 박형호;이정용;조경익;이중환;권오준;남기수
    • 전자공학회논문지A
    • /
    • 제28A권5호
    • /
    • pp.375-379
    • /
    • 1991
  • Formation of TiAs precipitate through the reaction between TiSi2 with C54 structure and heavily doped arsenic ion in poly-silicon, and influence of TiSAs and silicon distribution resulted from the reaction TiSi2+As ->2Si on the morphology degradation have been studied.

  • PDF