• Title/Summary/Keyword: Shrink/Swell

Search Result 17, Processing Time 0.029 seconds

Nonlinear State Feedback for Minimum Phase in Nuclear Steam Generator Level Dynamics

  • Jeong, Seong-Uk;Choi, Jung-In
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.66-70
    • /
    • 1997
  • The steam generator level is susceptible to the nonminimum phase in dynamics due to the thermal reverse effects known as "shrink and swell" in a pressurized water reactor. A state feedback assisted control concept is presented for the change of dynamic performance to the minimum phase the concept incorporates a nonlinear digital observer as a part of the control system. The observer is deviced to estimate the state variables that provide the true indication of water inventory by compensating for shrink and swell effects. The concept is validated with implementation into the steam generator simulation model.

  • PDF

A Fuzzy Ligic Controller for the Swell and Shrink Problems of Nuclear Steam Generators

  • Moon, Byung-Soo;Park, Jae-Chang-;Han, Kwang-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1070-1073
    • /
    • 1993
  • A Fuzzy Logic Controller for handing the swell/shrink problems of nuclear steam generators is designed, implemented and tested on the compact nuclear simulator at Korea Atomic Energy Research Institute. Its performance is found to be better than of the PI controller originally being used. In terms of the total variations for the control actions and for the flow error curve, the ones by the fuzzy controller are found to be less than one third of those by the PI controller.

  • PDF

Logic Processor Modeling of a Steam Generator in Nuclear Power Plant (논리 프로세서에 의한 원자력 발전소 증기발생기 모델링)

  • Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.1-11
    • /
    • 1998
  • In this work, we propose a modeling method based on an artifical intelligence technique for a stem generator in a nuclear power plant. Modeling the steam generator is known to be difficult due to several facts; especially, the dynamics of the steam generator is nonminimum phase which is mainly caused by the swell and shrink phenomena from thermal effects. In order to overcome this difficulty, we adopt so-called logic processor whose structure itself has a logical meaning to be easily established and also efficiently learned. Such a manner, we could derive an useful model simulating the dynamics of the steam generator in a nuclear power plant.

  • PDF

An Experimental Study on the Level Control of the Steam Generator in Nuclear Power Plant (원자력발전소 증기발생기 수위제어에 대한 실험적 연구)

  • 문제선;양명승;김기현;유재석;박영무
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.170-175
    • /
    • 1997
  • An experimental study was carried out with the Mock-up made for the improved water level control of the steam generator in nuclear power plant and for the confirmation of swell/shrink status of the water level by opening and closing the steam dump valve. We can confirmed the possibility of using the Mock-up by introducing the PI controller and the FUZZY controller. Accordingly, we can confirmed that the practical usability of advanced controllers, which will be developed for the improved water level control of the steam generator in nuclear power plant by using the Mock-up.

  • PDF

Water Level Control of Nuclear Plant Steam Generator (원자력 발전소의 증기발생기 수위조절)

  • 이윤준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.753-764
    • /
    • 1992
  • The steam generator water level is difficult to control at low power due to its reversed responses to the feedwater flow, which are well known as the shrink and swell phenomena. With regard to this problem a new control scheme has been studied by which the level transients could be kept within permissible ranges at low power. The relations between the various input conditions to steam generator and the level transients have been examined to be expressed in the form of process transfer functions. Analog filters have been incorporated to be expressed in the process with proper control constants. This control scheme allows the prediction of level variation together with the corresponding feedwater rate and results in mider transients with good stabilites.

LIGHT-REGULATED LEAF MOVEMENT AND SIGNAL TRANSDUCTION IN NYCTINASTIC PLANTS

  • Kim, Hak-Yong
    • Journal of Photoscience
    • /
    • v.4 no.1
    • /
    • pp.23-30
    • /
    • 1997
  • Leaf movements in nyctinastic plants are produced by changes in the turgor of extensor and flexor cells, collectively called motor cells, in opposing regions of the leaf movement organ, the pulvinus. In Samanea saman, a tropical tree of the legume family, extensor cells shrink and flexor cells swell to bend the pulvinus and fold the leaf at night, whereas extensor cells swell and flexor cells shrink to straighten the pulvinus and extend the leaf in the daytime. These changes are caused by ion fluxes primarily of potassium and chloride, across the plasma membrane of the motor cells. These ion fluxes are regulated by exogenous light signals and an endogenous biolgical clock. Inward-directed K$^+$ channels are closed in extensor and open in flexor cells in the dark period, while these channels are open in extensor and closed in flexor cells in the light period. Blue light opens the closed K$^+$ channels in extensor and closes the open them in flexor cells during darkness. Illumination of red light followed by darkness induces to open the closed K$^+$ channels in flexor and to close the open K$^+$ channels in extensor cells in the light. The dynamics of K$^+$ channels in motor cells that are controlled by light signals are consistent with the behavior of the pulvini in intact plants. Therefore, these cell types are an attractive model system to elucidate regulations of ion transports and their signal transduction pathways in plants. This review is focused on light-controlled ion movements and regulatory mechanisms involved in phosphoinositide signaling in leaf movements in nyctinastic plants.

  • PDF

The level control of Steam Generator in Nuclear Power Plant by Neural Network-PI Controller (PI-신경망 제어기를 이용한 원자력 발전소용 증기 발생기 수위제어)

  • 김동화
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.6-13
    • /
    • 1998
  • It is difficult to control for the level of the steam generator in the nuclear power plant because there is swell and shrink, and many disturbance such as, feed water rate, feedwater temperature, main steam flow rte, coolant temperature effect steam generator level. If the conventional PI controller use in this system, we cannot have a stability in the control of the lower power, the rejection function of disturbance, and the load following effectively. In this paper, e study the application of the of neural network based Kp, Ti for Pi controller to the level control of the steam generator of nuclear power plant through the simulation and experimental on the steam generator. We are satisfied with the resulting against the inturrupt of the disturbance, the change of setpoint through the simulation and the swell and shrink, the response of controller on the experimental steam generator.

  • PDF

The devlepment of a MPC controller for water level control in the steam generator of a nuclear power plant (원전 증기발생기 수위제어를 위한 MPC 제어기 개발)

  • 손덕현;한진욱;이환섭;이창구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.359-359
    • /
    • 2000
  • Generally, level control in the steam generator of a nuclear power plant is difficulty process control, because the low power operating can lead nonminimum phase characteristics(swell and shrink phenomenon) and flow measurement are unreliable and nonlinear characteristics. This paper presents a framework for solving this problem based on the constrained linear model predictive control and introduces the design of method for the level of the controller in the entire operating power of the steam generator, and compares with conventional PI controller.

  • PDF

A Study on Improvement of PWR Steam Generator Water Level Control at Low Power Operation (저출력시 원전 증기발생기 수위제어 개선 연구)

  • Yun, Jae-Hee;Han, Jai-Bok;Joon Lyou
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.420-424
    • /
    • 1994
  • This paper presents an improved water level control scheme for Pressurized Water Reactor(PWR) Steam Generator(S/G) at the low power operation and transient states. To reduce fluctuations of the water level by the swell and shrink phenomena, the scheme adds feedforward terms considering S/G pressure and the feedwater temperature into the conventional proportional-integral feedback controller. The simulation results using the Compact Nuclear Simulator show that smaller level errors and much faster settling time than those of the conventional scheme can be obtained. The proposed algorithm is easily implementable and has a potential for the real applications.

  • PDF

Development of an automatic steam generator level control logic at low power (저 출력시 증기발생기 수위의 자동제어논리 개발)

  • Han, Jae-Bok;Jung, Si-Chae;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.601-604
    • /
    • 1996
  • It is well known that steam generator water level control at low power operation has many difficulties in a PWR (pressurized water reactor) nuclear power plant. The reverse process responses known as shrink and swell effects make it difficult to control the steam generator water level at low power. A new automatic control logic to remove the reverse process responses is proposed in this paper. It is implemented in PLC (programmable logic controller) and evaluated by using test equipment in Korea Atomic Energy Research Institute. The simulation test shows that the performance requirements is met at low power (below 15%). The water level control by new control logic is stabilized within 1% fluctuation from setpoint, while the water level by YGN 3 and 4 control logic is unstable with the periodic fluctuation of 25% magnitude at 5% power.

  • PDF