• Title/Summary/Keyword: Shot Peening

Search Result 186, Processing Time 0.024 seconds

An Effect of Compressive Residual Stress on a High Temperature Fatigue Crack Propagation Behavior of The Shot-peened Spring Steel (압축잔류응력이 스프링강의 고온환경 피로크랙 진전거동에 미치는 영향)

  • Park, Keyoung-Dong;Jung, Chan-Gi
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.117-124
    • /
    • 2002
  • The lightness of components required in automobile and machinery industry is requiring high strength of components. In particular, manufacturing process and new materials development for solving the fatigue fracture problem attendant upon high strength of suspension of automobile are actively advanced. In this paper, the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in high temperatures($100^{\circ}C,\;150^{\circ}C,\;180^{\circ}C$) was investigated with considering fracture mechanics. So, we can obtain followings. (1) Compressive residual stress is decreased in high temperature, that is, with increasing temperature. (2) The effect of compressive residual stress on fatigue crack growth behavior in high temperature is increased below ${\Delta}K=17{\sim}19MPa\sqrt{m}$. The fatigue crack growth rate is increased with increasing temperature. The fatigue life is decreased with increasing temperature. (3) The dependence of temperature and compressive residual stress on the parameters C and m in Paris' law formed the formulas such as equations (3),(4),(5),(6),(7),(8),(9),(10). (4) It was investigated by SEM that the constraint of compress residual stress for plastic zone of fatigue crack tip was decreased in high temperature as compared with room temperature.

  • PDF

Characteristics of High Temperature Fatigue Fracture in Spring Steels after Shot Peening (쇼트피닝 가공한 스프링강의 고온 피로 파괴 특성에 관한 연구)

  • Park, Keyung-Dong;Shin, Yeong-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.1-6
    • /
    • 2006
  • The lightness of components that was required in automobile and machinery industry requires high strength of components. In particular, manufacturing process and new materials development for solving the fatigue facture problem attendant upon high strength of suspension of automobile are actively advanced. In this paper, the effect of compressive residual stress of spring steel(JISG SUP-9)by shot-peening on fatigue crack growth characteristics in high temperature($100^{\circ}C,\;150^{\circ}C,\;180^{\circ}C$)was investigated with considering fracture mechanics. So, we can obtaint the followings. (1) Compressive residual stress is decreased with increasing the test temperature. (2) The effect of compressive residual stress on fatigue crack growth behavior in high temperature is increased below ${\Delta}K=17{\sim}19MPa{\sqrt{m}}$. (3) It was investigated by SEM that the constraint of compress residual stress for plastic zone of fatigue crack tip was decreased in high temperature as compared with room temperature.

The Effect of Residual Stresses on Surface Failure and Wear (잔류응력의 표면파손과 마멸에 대한 영향)

  • Lee, Yeong-Je;Kim, Jin-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.677-682
    • /
    • 2002
  • Break-in is an intentional treatment to enhance the performance life of machinery parts and to maintain static friction behavior. Most studies on break-in have concerned only about surface conditions such as roughness or film formation. But the exact mechanism of break-in has not been found yet. Friction, scuffing behavior and wear of AISI 1045 were studied in relation to break-in and residual stress. The cylinder-on-disk type tribometer was used with the line-contact geometry. Scuffing tests were carried out using a constant load of 730N. In the break-in procedure the step load was applied from 100N to 200N. In this experiment, it was found that the break-in helps compressive residual stress to be formed well enough to enhance the scuffing life during the scuffing test. Specimens that had high compressive residual stress induced by shot-peening show better wear resistance than those were not shot-peened. Results of scuffing test, break-in procedure and wear amount in relation to residual stress have been discussed.

Effect of Inner Shot Peening Process for Tubular Stabilizer Bars (차량용 중공 스테빌라이저바의 내측 쇼트피닝 효과)

  • Seo, Yu Won;Sur, Jin Won;Lee, Won Ki;Kim, Jin Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1119-1124
    • /
    • 2017
  • The stabilizer bar mounted on the vehicle underbody makes for a more comfortable ride by holding the vehicle itself when the vehicle is cornering. Stabilizer bars are available in two types: solid and tube. To lighten the weight of the vehicle, and owing to weight reduction requirements, tubular stabilizer bars are increasingly being used. Tubular stabilizer bars can be fabricated to be over 34% lighter than solid bars, but the lifetime of the product tends to decrease rapidly as the weight ratio increases. However, the durability can be improved by utilizing high-strength and high-hardness materials for the stabilizer bar or by improving the shot peening method.

The Characteristics of Friction and Wear for Automative Leaf Spring Materials (자동차용 Leaf 스프링 재질의 마찰 및 마멸 특성)

  • Oh Se-Doo;Ahn Jong-Chan;Park Soon-Cheol;Jung Won-Wook;Bae Dong-ho;Lee Young-Ze
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.118-126
    • /
    • 2003
  • In the present study, the residual stresses can have a significant on the life of structural engineering components. Residual stresses are created by the surface treatment such as shot peening or deep rolling. The objective of this experimental investigation is to study the influence of friction and wear characteristics due to residual stress under dry sliding condition. Friction and wear data were obtained with a specially designed tribometer. Test specimens were made of SUP9(leaf spring material) after they were created residual stress by shot peening treatment. Residual stress profiles were measured at surface by means of the X-ray diffraction. Sliding tests were carried out different contact pressure and same sliding velocity 0.035m/s(50rpm). Leaf spring assembly test used to strain gauge sticked on leaf spring specimen in order to measure interleaf friction of leaf spring. Therefore, we were obtained hysteresis curve. As the residual stresses of surfaces increased, coefficient of friction and wear volume are decreased, but the residual stresses of surfaces are high, and consequently wear volume do not decreased. Coefficient of friction obtained from leaf spring assembly test is lower than that obtained from sliding test. From the results, structural engineering components reduce coefficient of friction and resistant wear in order to have residual stresses themselves.

  • PDF

Microstructural and Mechanical Characteristics of Al-Si-Cu Die Casting Alloy for Engine Mount Bracket (엔진 마운트 브라켓용 다이캐스팅 Al-Si-Cu 합금의 미세조직과 기계적 특성)

  • Chyun, In-Bum;Hong, Seung-Pyo;Kim, Chung-Seok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.6
    • /
    • pp.281-287
    • /
    • 2014
  • Microstructural and mechanical characteristics of Al-6Si-2Cu alloy for engine mount bracket prepared by gravity casting (as-cast) and die-casting (as-diecast) process have been investigated. For the microstructural characterization, the inductively coupled plasma mass spectrometry (ICP-MS), optical microscope (OM), scanning electron microscope (SEM) and electron probe microanalysis (EPMA) analyses are conducted. For the intermetallic phases, the X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) are also conducted with quantitative and qualitative analysis. Micro Vickers hardness and static tensile test are achieved in order to measure mechanical properties of alloys. Secondary dendrite arm spacing (SDAS) of as-cast and as-diecast show 37um and 18um, respectively. A large amount of coarsen eutectic Si, $Al_2Cu$ intermetallic phase and Fe-rich phases are identified in the Al-6Si-2Cu alloy. Mechanical properties of gravity casting alloy are much higher than those of die-casting alloy. Especially, yield strength and elongation of gravity casting alloy show 2 times higher than die-casting alloy. After shot peening, shot peening refined the surface grains and Si particles of the alloys by plastic deformation. The surface hardness value shows that shot peening alloy has higher value than unpeening alloy.

Area-Averaged Solution of Peening Residual Stress Using a 3D Multi-impact Symmetry-cell FE Model with Plastic Shots (소성숏이 포함된 3차원 다중충돌 대칭-셀 해석모델을 이용한 면적평균 피닝잔류응력해)

  • Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.310-320
    • /
    • 2009
  • In this paper, we estimate area-averaged solution of peening residual stress using a 3-D multi-impact symmetry-cell FE model. The symmetry-cell model includes factors reflecting peening phenomena and plastic shot. Area-averaged solution is much closer to XRD experimental solution than 4-node-averaged solution in plastic shot FE model. We then obtain FE Almen saturation curve corresponding to experimental Almen curve based on area-averaged solution. Using the curve, we obtain FE area-averaged solution in major peening materials, and compare the FE solution with experimental solution. In peening materials, surface, maximum compressive residual stress and deformation depth reach experimental solutions. Thus, FE Almen curve is useful for estimation of residual stress solution and could improve the efficiency of peening process. Consequently, it is confirmed that concept of area-averaged solution is the realistic analytical method for evaluation of peening residual stress.

A three-dimensional finite element analysis of two/multiple shots impacting on a metallic component

  • Hong, T.;Ooi, J.Y.;Shaw, B.A.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.709-729
    • /
    • 2008
  • This paper describes a three-dimensional dynamic finite element analysis of two/multiple shots impacting on a metallic component. The model is validated against a published numerical study. An extensive parametric study is conducted to investigate the effect of shot impacting with overlap on the resulting residual stress profile within the component, including time interval between shot impacts, separation distance between the impacting points, and impacting velocity of successive shots. Several meaningful conclusions can be drawn regarding the effect of shot impacting with overlap.

Evaluation of Harmless Crack Size of SCM822H Steel by Double Shot Peening (이중 쇼트 피닝에 의한 SCM822H 강의 무해화 균열 크기 평가)

  • Jin-Woo Choi;Seo-Hyun Yun;Yung-Kug Kwon;Gum-Hwa Lee;Ki-Woo, Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1011-1017
    • /
    • 2023
  • In this study, the harmless crack size (ahml) by double shot peening (DSP) using shot balls with different diameters was evaluated on carburized, quenched-tempered SCM822H steel. The minimum crack size (aNDI) detectable by non-destructive inspection was also evaluated. The relationship between the crack size (a25,50) that reduces the fatigue limit by 25% and 50% and ahml was evaluated. The residual stress of DSP was greater in SP(0.6+0.08) than SP(0.8+0.08) and appeared deeper in the depth direction. In addition, the hardness below the surface appeared larger. The fatigue limit of DSP increased 2.07 times and 1.95 times compared to non-SP. All ahml of the DSP specimen was determined at the depth (a). The compressive residual stress distribution affects ahml, and the ahml of SP(0.6+0.08), which has a large compressive residual stress and a high fatigue limit, appeared large. ahml of SP(0.6+0.08) introduced deeper than the residual stress of SP(0.8+0.08) is larger in the range of As=1.0-0.3. Since the residual stress in the thickness direction has a greater effect on ahml than the residual stress at the surface, it is necessary to introduce it more deeply. The relation of ahml, a25,50, and aNDI were evaluated in the point for safety and reliability.