• Title/Summary/Keyword: Shot Accuracy

Search Result 110, Processing Time 0.024 seconds

Using CR System at the Department of Radiation Oncology PACS Evaluation (방사선 종양학과에서 CR System을 이용한 PACS 유용성 평가)

  • Hong, Seung-Il;Kim, Young-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.2
    • /
    • pp.143-149
    • /
    • 2012
  • Today each hospital is trend that change rapidly by up to date, digitization and introducing newest medical treatment equipment. So, we introduce new CR system and supplement film system's shortcoming and PACS, EMR, RTP system's network that is using in hospital harmoniously and accomplish quality improvement of medical treatment and service elevation about business efficiency enlargement and patient Accordingly, we wish to introduce our case that integrate reflex that happen with radiation oncology here upon to PACS using CR system and estimate the availability. We measured that is Gantry, Collimator Star Shot, Light vs. Radiation, HDR QA(Dwell position accuracy) with Medical LINAC(MEVATRON-MX) Then, PACS was implemented on the digital images on the monitor that can be confirmed through the QA. Also, for cooperation with OCS system that is using from present source and impose code that need in treatment in each treatment, did so that Order that connect to network, input to CR may appear, did so that can solve support data mistake (active Pinacle's case supports DICOM3 file from present source but PACS does not support DICOM3 files.) of Pinacle and PACS that is Planning System and look at Planning premier in PACS. All image and data constructed integration to PACS as can refer and conduct premier in Hospital anywhere using CR system. Use Dosimetry IP in Filmless environment and QA's trial such as Light/Radition field size correspondence, gantry rotation axis' accuracy, collimator rotation axis' accuracy, brachy therapy's Dwell position check is available. Business efficiency by decrease and so on of unnecessary human strength consumption was augmented accordingly with session shortening as that integrate premier that is neted with radiation oncology using CR system to PACS. and for the future patient information security is essential.

Timeline Synchronization of Multiple Videos Based on Waveform (소리 파형을 이용한 다수 동영상간 시간축 동기화 기법)

  • Kim, Shin;Yoon, Kyoungro
    • Journal of Broadcast Engineering
    • /
    • v.23 no.2
    • /
    • pp.197-205
    • /
    • 2018
  • Panoramic image is one of the technologies that are commonly used today. However, technical difficulties still exist in panoramic video production. Without a special camera such as a 360-degree camera, making panoramic video becomes more difficult. In order to make a panoramic video, it is necessary to synchronize the timeline of multiple videos shot at multiple locations. However, the timeline synchronization method using the internal clock of the camera may cause an error due to the difference of the internal hardware. In order to solve this problem, timeline synchronization between multiple videos using visual information or auditory information has been studied. However, there is a problem in accuracy and processing time when using video information, and there is a problem in that, when using audio information, there is no synchronization when there is sensitivity to noise or there is no melody. Therefore, in this paper, we propose a timeline synchronization method between multiple video using audio waveform. It shows higher synchronization accuracy and temporal efficiency than the video information based time synchronization method.

Simulation of Shot Impact by a Wearable Smart Individual Weapon Mounted on a Forearm (하박 장착용 스마트 개인무장의 발사충격에 의한 인체거동 해석)

  • Koo, Sungchan;Kim, Taekyung;Choi, Minki;Kim, Sanghyun;Choi, Sungho;Lee, Yongsun;Kim, Jay J.
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.806-814
    • /
    • 2019
  • One of the future weapon systems is the individual smart weapon which has a structure mounted on the forearm of soldiers. The structure may cause injuries or affect the accuracy of fire due to its impact on joints when shooting. This paper proposes human-impact interaction modeling and a verification methodology in order to estimate the impact of fire applied to the forearm. For this purpose, a human musculoskeletal model was constructed and the joints' behavior in various shooting positions was simulated. In order to verify the simulation results, an impact testing device substituting the smart weapon was made and the experiment was performed on a real human body. This paper compares the simulation results performed under various impact conditions and the experimental values in terms of accuracy and introduces methods to complement them. The results of the study are expected to be a basis for a reliable human-impact interaction modeling, and smart individual weapon development.

A Lightweight Pedestrian Intrusion Detection and Warning Method for Intelligent Traffic Security

  • Yan, Xinyun;He, Zhengran;Huang, Youxiang;Xu, Xiaohu;Wang, Jie;Zhou, Xiaofeng;Wang, Chishe;Lu, Zhiyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3904-3922
    • /
    • 2022
  • As a research hotspot, pedestrian detection has a wide range of applications in the field of computer vision in recent years. However, current pedestrian detection methods have problems such as insufficient detection accuracy and large models that are not suitable for large-scale deployment. In view of these problems mentioned above, a lightweight pedestrian detection and early warning method using a new model called you only look once (Yolov5) is proposed in this paper, which utilizing advantages of Yolov5s model to achieve accurate and fast pedestrian recognition. In addition, this paper also optimizes the loss function of the batch normalization (BN) layer. After sparsification, pruning and fine-tuning, got a lot of optimization, the size of the model on the edge of the computing power is lower equipment can be deployed. Finally, from the experimental data presented in this paper, under the training of the road pedestrian dataset that we collected and processed independently, the Yolov5s model has certain advantages in terms of precision and other indicators compared with traditional single shot multiBox detector (SSD) model and fast region-convolutional neural network (Fast R-CNN) model. After pruning and lightweight, the size of training model is greatly reduced without a significant reduction in accuracy, and the final precision reaches 87%, while the model size is reduced to 7,723 KB.

Research of Deep Learning-Based Multi Object Classification and Tracking for Intelligent Manager System (지능형 관제시스템을 위한 딥러닝 기반의 다중 객체 분류 및 추적에 관한 연구)

  • June-hwan Lee
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.73-80
    • /
    • 2023
  • Recently, intelligent control systems are developing rapidly in various application fields, and methods for utilizing technologies such as deep learning, IoT, and cloud computing for intelligent control systems are being studied. An important technology in an intelligent control system is recognizing and tracking objects in images. However, existing multi-object tracking technology has problems in accuracy and speed. In this paper, a real-time intelligent control system was implemented using YOLO v5 and YOLO v6 based on a one-shot architecture that increases the accuracy of object tracking and enables fast and accurate tracking even when objects overlap each other or when there are many objects belonging to the same class. The experiment was evaluated by comparing YOLO v5 and YOLO v6. As a result of the experiment, the YOLO v6 model shows performance suitable for the intelligent control system.

The Effect of Highly Concentrated Oxygen Administration on Cerebrum Lateralization of Young Men during Visuospatial Task (고농도의 산소 공급이 공간지각 과제 수행 시 젊은 성인 남자의 대뇌 편측화에 미치는 영향)

  • 정순철;손진훈;김익현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.180-187
    • /
    • 2004
  • The present study attempted to investigate the effects of supply of highly concentrated (30%) oxygen on human ability of visuospatial cognition and cerebrum lateralization. compared to air of normal oxygen concentration (21%). The experiment consisted of two runs, one fur visuospatial cognition test with normal air (21% of oxygen) and for visuospatial cognition test with more oxygen in the air (30% of oxygen). Each run was composed of four blocks and each block included eight control tasks and five visuospatial tasks. Functional brain images were taken from 3T MRI using the single-shot EPI method. The result of task performance showed the accuracy increased at 30%'s concentration of oxygen rather than 21%'s. There were more activations observed at the left and right hemisphere, but there was decrease cerebrum lateralization with 30% oxygen administration. Thus, it is concluded that the positive effect on the visuospatial cognitive performance level by the highly concentrated oxygen administration was due to increase of cerebrum activation and decrease of cerebrum lateralization

Fast Scene Change Detection Algorithm in Compressed Video by a phased-approach Method (압축 비디오에서 단계적 접근방법에 의한 빠른 장면전환검출 알고리듬)

  • 이재승;천이진;윤정오
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.3
    • /
    • pp.115-122
    • /
    • 2001
  • A scene change detection is an important step for video indexing and retrieval. This paper proposes an algorithm by a phased algorithm for fast and accurate detection of abrupt scene changes in an MPEG compressed domain with minimal decoding requirements and computational effort. The proposed method compares two successive I-frames for locating a scene change occurring within the GOP and uses macroblock-coded type information contained in B-frames to detect the exact frame where the scene change occurred. The algorithm has the advantage of speed, simplicity and accuracy. In addition, it requires less amount of storage. The experiment results demonstrate that the proposed algorithm has better detection performance, such as precision and recall rate, than the existing method using all DC images.

  • PDF

Loop-Mediated Isothermal Amplification for the Detection of Xanthomonas arboricola pv. pruni in Peaches

  • Li, Weilan;Lee, Seung-Yeol;Back, Chang-Gi;Ten, Leonid N.;Jung, Hee-Young
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.635-643
    • /
    • 2019
  • To detect Xanthomonas arboricola pv. pruni, a loopmediated isothermal amplification (LAMP) detection method were developed. The LAMP assay was designed to test crude plant tissue without pre-extraction, or heating incubation, and without advanced analysis equipment. The LAMP primers were designed by targeting an ABC transporter ATP-binding protein, this primer set was tested using the genomic DNA of Xanthomonas and non-Xanthomonas strains, and a ladder product was generated from the genomic DNA of X. arboricola pv. pruni strain but not from 12 other Xanthomonas species strains and 6 strains of other genera. The LAMP conditions were checked with the healthy leaves of 31 peach varieties, and no reaction was detected using either the peach leaves or the peach DNA as a template. Furthermore, the high diagnostic accuracy of the LAMP method was confirmed with 13 X. arboricola pv. pruni strains isolated from various regions in Korea, with all samples exhibiting a positive reaction in LAMP assays. In particular, the LAMP method successfully detected the pathogen in diseased peach leaves and fruit in the field, and the LAMP conditions were proven to be a reliable diagnostic method for the specific detection and identification of X. arboricola pv. pruni in peach orchards.

A Study on the Filling Imbalance of Polyamide Molding by Taguchi Method (다구찌 방법을 이용한 폴리아미드 성형품의 충전 불균형에 관한 연구)

  • Han, Kyu-Taek;Jeong, Yeong-Deug;Goo, Yang;Kim, Byung-Tak;Kim, Hyung-Je;Han, Seong-Ryul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.95-100
    • /
    • 2004
  • Plastics is used to produce precise parts with an inclusion of a reinforcement material such as glass fiber or carbon fiber to improve the dimension accuracy. The plastic goods can be produced with inaccurate dimensions, low mechanical strength, or residual stress due to the over packing of cavity inside, if the filling balance of melt resin is not accomplished. To overcome this problem, it is necessary to design the runner system with the geometrical balance at the mold design stage. However, even if the balanced runner system is achieved, a severe filling imbalance is observed practically in a multi-cavity mold. In this study, experiments were performed with Taguchi method to achieve the filling balance in multi-cavity mold with a symmetric runner system, by the use of pure PA and PA with glass fiber 33%. The experimental results were investigated to understand the effect of related molding factors on the filling imbalance for two resins.

  • PDF

Laser Ranging for Lunnar Reconnaissance Orbiter using NGSLR (NGSLR 시스템을 이용한 LRO 달 탐사선의 레이저 거리측정)

  • Lim, Hyung-Chul;McGarry, Jan;Park, Jong-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1136-1143
    • /
    • 2010
  • One-way laser ranging technology is applied for the precise orbit determination of LRO, which is the first trial for supporting the missions of lunar or planetary spacecraft. In this paper, LRO payload and ground system are discussed for LRO laser ranging, and some errors effecting on time of flight and tracking mount accuracy are analyzed. Additionally several technologies are also analyzed to make laser pulses shot from ground stations to arrive in the LRO earth window. Measurement data of LRO laser ranging verified that these technologies could be implemented for one-way laser ranging of lunar spacecraft.