Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.07.2019.0197

Loop-Mediated Isothermal Amplification for the Detection of Xanthomonas arboricola pv. pruni in Peaches  

Li, Weilan (School of Applied Biosciences, Kyungpook National University)
Lee, Seung-Yeol (School of Applied Biosciences, Kyungpook National University)
Back, Chang-Gi (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science)
Ten, Leonid N. (School of Applied Biosciences, Kyungpook National University)
Jung, Hee-Young (School of Applied Biosciences, Kyungpook National University)
Publication Information
The Plant Pathology Journal / v.35, no.6, 2019 , pp. 635-643 More about this Journal
Abstract
To detect Xanthomonas arboricola pv. pruni, a loopmediated isothermal amplification (LAMP) detection method were developed. The LAMP assay was designed to test crude plant tissue without pre-extraction, or heating incubation, and without advanced analysis equipment. The LAMP primers were designed by targeting an ABC transporter ATP-binding protein, this primer set was tested using the genomic DNA of Xanthomonas and non-Xanthomonas strains, and a ladder product was generated from the genomic DNA of X. arboricola pv. pruni strain but not from 12 other Xanthomonas species strains and 6 strains of other genera. The LAMP conditions were checked with the healthy leaves of 31 peach varieties, and no reaction was detected using either the peach leaves or the peach DNA as a template. Furthermore, the high diagnostic accuracy of the LAMP method was confirmed with 13 X. arboricola pv. pruni strains isolated from various regions in Korea, with all samples exhibiting a positive reaction in LAMP assays. In particular, the LAMP method successfully detected the pathogen in diseased peach leaves and fruit in the field, and the LAMP conditions were proven to be a reliable diagnostic method for the specific detection and identification of X. arboricola pv. pruni in peach orchards.
Keywords
loop-mediated isothermal amplification; peach; shot hole disease; Xanthomonas arboricola pv. pruni;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Barionovi, D. and Scortichini, M. 2008. Integron variability in Xanthomonas arboricola pv. juglandis and Xanthomonas arboricola pv. pruni strains. FEMS Microbiol. Lett. 288:19-24.   DOI
2 Buhlmann, A., Pothier, J. F., Tomlinson, J. A., Frey, J. E., Boonham, N., Smits, T. H. M. and Duffy, B. 2013. Genomicsinformed design of loop-mediated isothermal amplification for detection of phytopathogenic Xanthomonas arboricola pv. pruni at the intraspecific level. Plant Pathol. 62:475-484.   DOI
3 Garita-Cambronero, J., Palacio-Bielsa, A., Lopez, M. M. and Cubero, J. 2017. Pan-genomic analysis permits differentiation of virulent and non-virulent strains of Xanthomonas arboricola that cohabit Prunus spp. and elucidate bacterial virulence factors. Front. Microbiol. 8:573.
4 Goodman, C. A. and Hattingh, M. J. 1986. Transmission of Xanthomonas campestris pv. pruni in plum and apricot nursery trees by budding. HortScience 21:995-996.
5 Hammerschlag, F. A. 2000. Resistant responses of peach somaclone 122-1 to Xanthomonas campestris pv. pruni and to Pseudomonas syringae pv. syringae. HortScience 35:141-143.   DOI
6 Iwamoto, T., Sonobe, T. and Hayashi, K. 2003. Loop-mediated isothermal ampli-cation for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J. Clin. Microbiol. 41:2616-2622.   DOI
7 Kawaguchi, A. 2014. Genetic diversity of Xanthomonas arboricola pv. pruni strains in Japan revealed by DNA fingerprinting. J. Gen. Plant Pathol. 80:366-369.   DOI
8 Lane, D. J. 1991. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics, eds. by E. Stackebrandt and M. Goodfellow, pp. 115-175. Wiley, New York, USA.
9 Lopez-Soriano, P., Noguera, P., Gorris, M. T., Puchades, R., Maquieira, A., Marco-Noales, E. and Lopez, M. M. 2017. Lateral flow immunoassay for on-site detection of Xanthomonas arboricola pv. pruni in symptomatic field samples. PLoS ONE 12:e0176201.   DOI
10 Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:E63.   DOI
11 Pagani, M. C. 2005. An ABC transporter protein and molecular diagnosis of Xanthomonas arboricola pv. pruni causing bacterial spot of stone fruits. Ph.D. thesis. North Carolina State University, Raleigh, NC, USA.
12 Palacio-Bielsa, A., Cubero, J., Cambra, M. A., Collados, R., Berruete, I. M. and Lopez, M. M. 2011. Development of an efficient real-time quantitative PCR protocol for detection of Xanthomonas arboricola pv. pruni in Prunus species. Appl. Environ. Microbiol. 77:89-97.   DOI
13 Palacio-Bielsa, A., Lopez-Soriano, P., Buhlmann, A., van Doorn, J., Pham, K., Cambra, M. A., Berruete, I. M., Pothier, J. F., Duffy, B., Olmos, A. and Lopez, M. M. 2015. Evaluation of a real-time PCR and a loop-mediated isothermal amplification for detection of Xanthomonas arboricola pv. pruni in plant tissue samples. J. Microbiol. Methods 112:36-39.   DOI
14 Park, S. Y., Lee, Y. S., Koh, Y. J., Hur, J.-S. and Jung, J. S. 2010. Detection of Xanthomonas arboricola pv. pruni by PCR using primers based on DNA sequences related to the hrp genes. J. Microbiol. 48:554-558.   DOI
15 Park, S. Y., Lee, Y. S., Shin, J. S., Koh, Y. J. and Jung, J. S. 2009. Genetic diversity of Xanthomonas arboricola pv. pruni isolated in Korea. J. Life Sci. 19:684-687.   DOI
16 Tan, L., Rong, W., Lou, H., Chen, Y. and He, C. 2014. The Xanthomonas campestris effector protein XopDXcc8004 triggers plant disease tolerance by targeting DELLA proteins. New Phytol. 204:595-608.   DOI
17 Pothier, J. F., Pagani, M. C., Pelludat, C., Ritchie, D. F. and Duffy, B. 2011. A duplex-PCR method for species- and pathovarlevel identification and detection of the quarantine plant pathogen Xanthomonas arboricola pv. pruni. J. Microbiol. Methods 86:16-24.   DOI
18 Ritchie, D. F. 1995. Bacterial spot. In: Compendium of stone fruit diseases, eds. by J. M. Ogawa, E. I. Zehr, G. W. Bird, D. F. Ritchie, K. Uriu and J. K. Uyemoto, pp. 50-52. APS Press, St. Paul, MN, USA.
19 Ritchie, D. F. 1999. Sprays for control of bacterial spot of peach cultivars having different levels of disease susceptibility, 1998. Fungic. Nematic. Tests 54:63-64.
20 Snaidr, J., Amann, R., Huber, I., Ludwig, W. and Schleifer, K. H. 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63:2884-2896.   DOI
21 Vauterin, L., Hoste, B., Kersters, K. and Swings, J. 1995. Reclassi-cation of Xanthomonas. Int. J. Syst. Evol. Bacteriol. 45:472-489.   DOI
22 Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H. and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67:1613-1617.   DOI
23 Zaccardelli, M., Malaguti, S. and Bazzi, C. 1998. Biological and epidemiological aspects of Xanthomonas arboricola pv. pruni on peach in Italy. J. Plant Pathol. 80:125-132.
24 Ballard, E. L., Dietzgen, R. G., Sly, L. I., Gouk, C., Horlock, C. and Fegan, M. 2011. Development of a Bio-PCR protocol for the detection of Xanthomonas arboricola pv. pruni. Plant Dis. 95:1109-1115.   DOI
25 Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1992. Current protocols in molecular biology. Vol. I. Greene Publishing Associates and Wiley Interscience, New York, NY.