• Title/Summary/Keyword: Short-time Traffic Flow

Search Result 35, Processing Time 0.024 seconds

An Ensemble Cascading Extremely Randomized Trees Framework for Short-Term Traffic Flow Prediction

  • Zhang, Fan;Bai, Jing;Li, Xiaoyu;Pei, Changxing;Havyarimana, Vincent
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1975-1988
    • /
    • 2019
  • Short-term traffic flow prediction plays an important role in intelligent transportation systems (ITS) in areas such as transportation management, traffic control and guidance. For short-term traffic flow regression predictions, the main challenge stems from the non-stationary property of traffic flow data. In this paper, we design an ensemble cascading prediction framework based on extremely randomized trees (extra-trees) using a boosting technique called EET to predict the short-term traffic flow under non-stationary environments. Extra-trees is a tree-based ensemble method. It essentially consists of strongly randomizing both the attribute and cut-point choices while splitting a tree node. This mechanism reduces the variance of the model and is, therefore, more suitable for traffic flow regression prediction in non-stationary environments. Moreover, the extra-trees algorithm uses boosting ensemble technique averaging to improve the predictive accuracy and control overfitting. To the best of our knowledge, this is the first time that extra-trees have been used as fundamental building blocks in boosting committee machines. The proposed approach involves predicting 5 min in advance using real-time traffic flow data in the context of inherently considering temporal and spatial correlations. Experiments demonstrate that the proposed method achieves higher accuracy and lower variance and computational complexity when compared to the existing methods.

Application of an Optimized Support Vector Regression Algorithm in Short-Term Traffic Flow Prediction

  • Ruibo, Ai;Cheng, Li;Na, Li
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.719-728
    • /
    • 2022
  • The prediction of short-term traffic flow is the theoretical basis of intelligent transportation as well as the key technology in traffic flow induction systems. The research on short-term traffic flow prediction has showed the considerable social value. At present, the support vector regression (SVR) intelligent prediction model that is suitable for small samples has been applied in this domain. Aiming at parameter selection difficulty and prediction accuracy improvement, the artificial bee colony (ABC) is adopted in optimizing SVR parameters, which is referred to as the ABC-SVR algorithm in the paper. The simulation experiments are carried out by comparing the ABC-SVR algorithm with SVR algorithm, and the feasibility of the proposed ABC-SVR algorithm is verified by result analysis. Continuously, the simulation experiments are carried out by comparing the ABC-SVR algorithm with particle swarm optimization SVR (PSO-SVR) algorithm and genetic optimization SVR (GA-SVR) algorithm, and a better optimization effect has been attained by simulation experiments and verified by statistical test. Simultaneously, the simulation experiments are carried out by comparing the ABC-SVR algorithm and wavelet neural network time series (WNN-TS) algorithm, and the prediction accuracy of the proposed ABC-SVR algorithm is improved and satisfactory prediction effects have been obtained.

An Adaptable Integrated Prediction System for Traffic Service of Telematics

  • Cho, Mi-Gyung;Yu, Young-Jung
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.171-176
    • /
    • 2007
  • To give a guarantee a consistently high level of quality and reliability of Telematics traffic service, traffic flow forecasting is very important issue. In this paper, we proposed an adaptable integrated prediction model to predict the traffic flow in the future. Our model combines two methods, short-term prediction model and long-term prediction model with different combining coefficients to reflect current traffic condition. Short-term model uses the Kalman filtering technique to predict the future traffic conditions. And long-term model processes accumulated speed patterns which means the analysis results for all past speeds of each road by classifying the same day and the same time interval. Combining two models makes it possible to predict future traffic flow with higher accuracy over a longer time range. Many experiments showed our algorithm gives a better precise prediction than only an accumulated speed pattern that is used commonly. The result can be applied to the car navigation to support a dynamic shortest path. In addition, it can give users the travel information to avoid the traffic congestion areas.

A Study on Link Travel Time Prediction by Short Term Simulation Based on CA (CA모형을 이용한 단기 구간통행시간 예측에 관한 연구)

  • 이승재;장현호
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.91-102
    • /
    • 2003
  • There are two goals in this paper. The one is development of existing CA(Cellular Automata) model to explain more realistic deceleration process to stop. The other is the application of the updated CA model to forecasting simulation to predict short term link travel time that takes a key rule in finding the shortest path of route guidance system of ITS. Car following theory of CA models don't makes not response to leading vehicle's velocity but gap or distance between leading vehicles and following vehicles. So a following vehicle running at free flow speed must meet steeply sudden deceleration to avoid back collision within unrealistic braking distance. To tackle above unrealistic deceleration rule, “Slow-to-stop” rule is integrated into NaSch model. For application to interrupted traffic flow, this paper applies “Slow-to-stop” rule to both normal traffic light and random traffic light. And vehicle packet method is used to simulate a large-scale network on the desktop. Generally, time series data analysis methods such as neural network, ARIMA, and Kalman filtering are used for short term link travel time prediction that is crucial to find an optimal dynamic shortest path. But those methods have time-lag problems and are hard to capture traffic flow mechanism such as spill over and spill back etc. To address above problems. the CA model built in this study is used for forecasting simulation to predict short term link travel time in Kangnam district network And it's turned out that short term prediction simulation method generates novel results, taking a crack of time lag problems and considering interrupted traffic flow mechanism.

Modern Telecommunications Media and Strategy for Intelligent Transportation System (지능형물류교통시스팀을 위한 첨단 정보통신기술과 향후 추진 전략)

  • 김성수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.91-97
    • /
    • 1997
  • The objective of a traffic management system is to promote safe driving, low pollution, short travel time, and optimized traffic flow by naturally distributing the flow of traffic through the use of suitable telecommunications media. Such traffic management systems will be improved by integrating dynamic traffic data and two-way communication media because cars can work as sensors. The purpose of this paper is to help organizations trying to select the correct telecommunications media for minimal-cost investment options without loss of functionality. The wireless communications for an intelligent transportation system (ITS) are introduced in this paper. We describe which kind of telecommunication media are suitable. FM broadcast type media or cellular phone can be recommended to provide real time traffic and roadway conditions in the first stage of ITS, because existing broadcast base station or cellular network facilities can be used. It is expected that cellular radio network or satellites are used for communication. Finally, the strategy and deployment plan of an ITS are described based on selections of telecommunication media in Korea.

  • PDF

TRAFFIC-FLOW-PREDICTION SYSTEMS BASED ON UPSTREAM TRAFFIC (교통량예측모형의 개발과 평가)

  • 김창균
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.84-98
    • /
    • 1995
  • Network-based model were developed to predict short term future traffic volume based on current traffic, historical average, and upstream traffic. It is presumed that upstream traffic volume can be used to predict the downstream traffic in a specific time period. Three models were developed for traffic flow prediction; a combination of historical average and upstream traffic, a combination of current traffic and upstream traffic, and a combination of all three variables. The three models were evaluated using regression analysis. The third model is found to provide the best prediction for the analyzed data. In order to balance the variables appropriately according to the present traffic condition, a heuristic adaptive weighting system is devised based on the relationships between the beginning period of prediction and the previous periods. The developed models were applied to 15-minute freeway data obtained by regular induction loop detectors. The prediction models were shown to be capable of producing reliable and accurate forecasts under congested traffic condition. The prediction systems perform better in the 15-minute range than in the ranges of 30-to 45-minute. It is also found that the combined models usually produce more consistent forecasts than the historical average.

  • PDF

Large Flows Detection, Marking, and Mitigation based on sFlow Standard in SDN

  • Afaq, Muhammad;Rehman, Shafqat;Song, Wang-Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.189-198
    • /
    • 2015
  • Despite the fact that traffic engineering techniques have been comprehensively utilized in the past to enhance the performance of communication networks, the distinctive characteristics of Software Defined Networking (SDN) demand new traffic engineering techniques for better traffic control and management. Considering the behavior of traffic, large flows normally carry out transfers of large blocks of data and are naturally packet latency insensitive. However, small flows are often latency-sensitive. Without intelligent traffic engineering, these small flows may be blocked in the same queue behind megabytes of file transfer traffic. So it is very important to identify large flows for different applications. In the scope of this paper, we present an approach to detect large flows in real-time without even a short delay. After the detection of large flows, the next problem is how to control these large flows effectively and prevent network jam. In order to address this issue, we propose an approach in which when the controller is enabled, the large flow is mitigated the moment it hits the predefined threshold value in the control application. This real-time detection, marking, and controlling of large flows will assure an optimize usage of an overall network.

A Design and Performance Evaluation of Path Search by Simplification of Estimated Values based on Variable Heuristic (가변 휴리스틱 기반 추정치 간소화를 통한 경로탐색 기법의 설계 및 성능 평가)

  • Kim, Jin-Deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2002-2007
    • /
    • 2006
  • The path search method in the telematics system should consider traffic flow of the roads as well as the shortest time because the optimal path with minimized travel time could be continuously changed by the traffic flow. The existing path search methods are not able to cope efficiently with the change of the traffic flow. The search method to use traffic information also needs more computation time than the existing shortest path search. In this paper, a method for efficiency improvement of path search is implemented and its performance is evaluated. The method employs the fixed grid for adjustable heuristic to traffic flow. Moreover, in order to simplify the computation of estimation values, it only adds graded decimal values instead of multiplication operation of floating point numbers with due regard to the gradient between a departure and a destination. The results obtained from the experiments show that it achieves the high accuracy and short execution time as well.

Rolling Horizon Implementation for Real-Time Operation of Dynamic Traffic Assignment Model (동적통행배정모형의 실시간 교통상황 반영)

  • SHIN, Seong Il;CHOI, Kee Choo;OH, Young Tae
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.135-150
    • /
    • 2002
  • The basic assumption of analytical Dynamic Traffic Assignment models is that traffic demand and network conditions are known as a priori and unchanging during the whole planning horizon. This assumption may not be realistic in the practical traffic situation because traffic demand and network conditions nay vary from time to time. The rolling horizon implementation recognizes a fact : The Prediction of origin-destination(OD) matrices and network conditions is usually more accurate in a short period of time, while further into the whole horizon there exists a substantial uncertainty. In the rolling horizon implementation, therefore, rather than assuming time-dependent OD matrices and network conditions are known at the beginning of the horizon, it is assumed that the deterministic information of OD and traffic conditions for a short period are possessed, whereas information beyond this short period will not be available until the time rolls forward. This paper introduces rolling horizon implementation to enable a multi-class analytical DTA model to respond operationally to dynamic variations of both traffic demand and network conditions. In the paper, implementation procedure is discussed in detail, and practical solutions for some raised issues of 1) unfinished trips and 2) rerouting strategy of these trips, are proposed. Computational examples and results are presented and analyzed.

Flow Holding Time based Advanced Hybrid QoS Routing Link State Update in QoS Routing

  • Cho, Kang Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.17-24
    • /
    • 2016
  • In this paper, we propose a AH LSU(Advanced Hybrid QoS Routing Link State Update) Algorithm that improves the performance of Hybrid LSU(Hybrid QoS Link State State Update) Algorithm with statistical information of flow holding time in network. AH LSU algorithm has had both advantages of LSU message control in periodic QoS routing LSU algorithm and QoS routing performance in adaptive LSU algorithm. It has the mechanism that calculate LSU message transmission priority using the flow of statistical request bandwidth and available bandwidth and include MLMR(Meaningless LSU Message Removal) mechanism. MLMR mechanism can remove the meaningless LSU message generating repeatedly in short time. We have evaluated the performance of the MLMR mechanism, the proposed algorithm and the existing algorithms on MCI simulation network. We use the performance metric as the QoS routing blocking rate and the mean update rate per link, it thus appears that we have verified the performance of this algorithm.