• 제목/요약/키워드: Short Baseline

검색결과 266건 처리시간 0.025초

대류권 지연이 이중차분법을 이용한 GPS 측위에 미치는 영향 (Impact of Tropospheric Delays on the GPS Positioning with Double-difference Observables)

  • 홍창기
    • 한국측량학회지
    • /
    • 제31권5호
    • /
    • pp.421-427
    • /
    • 2013
  • 일반적으로 GPS 데이터를 이용하여 단기선 처리를 하는 경우 대류권 지연 효과는 이중차분법에 의해 충분히 제거된다고 가정을 한다. 따라서 조정계산 모델식에서 대류권 지연 효과에 대한 미지수를 설정하지 않아도 되기 때문에 계산이 용이하다는 장점과 각종 오차요인의 제거로 인해 상대적으로 높은 측위정확도의 확보가 가능하다. 즉, 변위 모니터링 등 정밀측위가 요구되는 응용분야에서는 단기선 처리를 기반으로 하는 경우가 일반적이다. 하지만 기준국과 이동국의 높이 차이가 존재하는 경우 이중차분법을 사용하더라도 대류권 지연 효과가 충분히 제거되지 않기 때문에 측위정확도의 저하를 가져올 수 있다. 본 연구에서는 대류권 지연 효과가 기선의 방향에 따라 측위정확도에 미치는 영향을 분석하였다. 이를 위해 대류권 지연 효과가 포함된 GPS 관측값을 시뮬레이션(simulation)을 통해 생성한 후 이중차분법을 이용한 단기선 처리로 이동국의 좌표를 계산하였다. 계산된 이동국의 좌표잔차의 분석을 통해 기선 방향에 따른 대류권 지연 영향을 분석하였다. 분석 결과, 기준국과 이동국의 높이 차이가 증가함에 따라 좌표잔차에 편이가 발생하는 것으로 나타났으며 기선의 길이가 1m 증가함에 따라 0.07cm의 편이량이 계산되었다. 따라서 정밀측위를 위해서는 단기선일지라도 수직방향의 기선에 대해서는 대류권 지연 효과에 대한 충분한 고려가 있어야 한다.

ESTIMATING NEAR REAL TIME PRECIPITABLE WATER FROM SHORT BASELINE GPS OBSERVATIONS

  • Yang, Den-Ring;Liou, Yuei-An;Tseng, Pei-Li
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.410-413
    • /
    • 2007
  • Water vapor in the atmosphere is an influential factor of the hydrosphere cycle, which exchanges heat through phase change and is essential to precipitation. Because of its significance in altering weather, the estimation of water vapor amount and distribution is crucial to determine the precision of the weather forecasting and the understanding of regional/local climate. It is shown that it is reliable to measure precipitable water (PW) using long baseline (500-2000km) GPS observations. However, it becomes infeasible to derive absolute PW from GPS observations in Taiwan due to geometric limitation of relatively short-baseline network. In this study, a method of deriving Near-Real-Time PW from short baseline GPS observations is proposed. This method uses a reference station to derive a regression model for wet delay, and to interpolate the difference of wet delay among stations. Then, the precipitable water is obtained by using a conversion factor derived from radiosondes. The method has been tested by using the reference station located on Mt. Ho-Hwan with eleven stations around Taiwan. The result indicates that short baseline GPS observations can be used to precisely estimate the precipitable water in near-real-time.

  • PDF

심해 예인 탐사장비의 위치 보정에 대한 고찰 (Review on Underwater Positioning for Deep Towing Vehicles)

  • 이근창;고영탁;유찬민;지상범;김종욱;함동진
    • Ocean and Polar Research
    • /
    • 제27권3호
    • /
    • pp.335-339
    • /
    • 2005
  • The underwater positioning system is important in interpreting data that are acquired from towing vehicles such as the deep-sea camera (DSC) system. Currently, several acoustic positioning systems such as long baseline (LBL), short baseline (SBL), and ultra short baseline (USBL), are used for underwater positioning. The accurate position of DSC, however, could not be determined in a R/V Onnuri unequipped with any of these underwater positioning systems. As an alternative, the DSC position was estimated based on the topography of towing track and cable length in the cruises before 1999. The great uncertainties, however, were found in the areas of flat bottom topography. In the 2003 and 2004 cruises these uncertainties were reduced by calculating the position of DSC with the cable length and seafloor depth below the vessel. The Japanese cruises for Mn-nodule used a similar estimation method for the DSC positioning system with a CTD sensor. Although the latter can provide better information for the position of DSC, the USBL underwater positioning system is strongly recommended for establishing better positioning of DSC and other towing devices.

Acoustic theory application in ultra short baseline system for tracking AUV

  • Ji, Daxiong;Liu, Jian;Zheng, Rong
    • Ocean Systems Engineering
    • /
    • 제3권1호
    • /
    • pp.71-77
    • /
    • 2013
  • The effective tracking area of ultra short baseline (USBL) systems strongly relates to the safety of autonomous underwater vehicles (AUVs). This problem has not been studied previously. A method for determining the effective tracking area using acoustic theory is proposed. Ray acoustic equations are used to draw rays which ascertain the effective space. The sonar equation is established in order to discover the available range of the USBL system and the background noise level using sonar characteristics. The available range defines a hemisphere like enclosure. The overlap of the effective space with the hemisphere is the effective area for USBL systems tracking AUVs. Lake and sea trials show the proposed method's validity.

단기선에서 L1/L2 반송파를 이용한 GPS 기선해석 (The Baseline Analysis of GPS Using L1/L2 Carrier Phase In Short Baseline)

  • 강준묵;박정현;선재현
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 추계학술발표회 논문집
    • /
    • pp.81-86
    • /
    • 2003
  • As the utility value of GPS in surveying field is on the increase after the conversion into the world geodetic system, it is attracting the interest of many people involved in the application of GPS. In this study an algorithm was established settling ambiguity through LAMBDA techniques and the baseline processing program was developed for L1/L2 carrier phase using visual c++ 6.0, which is an object-oriented language. And the developed program proved that it maintained a difference of less than 3mm over the short baseline of 1.5m or shorter when compared with other commercialized programs.

  • PDF

배경잡음이 존재하는 얕은 수조 내에서의 USBL 위치추적 알고리즘 적용 가능성 연구 (Study on an USBL Positioning Algorithm in a Shallow Water Tank in Noisy Conditions)

  • 김시문;이판묵;이종무;임용곤
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.204-209
    • /
    • 2004
  • It is well known fact that acoustic positioning systems are absolutely needed for various underwater operations. According to the distances between their sensors they are classified into three parts: long baseline(LBL), short baseline(SBL), and ultra-short baseline(USBL). Among them the USBL system is widely used because of its simplicity, although it is the most inaccurate. Recently, in order to increase the positioning accuracy, various USBL systems using broadband signal such as MFSK(Multiple Frequency Shift Keying) are produced. However, their positioning accuracy is still limited by background noise and reflected waves. Therefore, there is difficulty in applying the USBL system using MFSK signal in a shallow water with noisy conditions. In order to examine the effect of the noise and wave reflections this paper analyze position errors for various conditions using numerical simulations. The simulation results say that tile SNR must be greater than 20dB and errors in the vertical direction are slightly increased by wave reflections by upper and lower boundaries.

  • PDF

대형구조물 모니터링을 위한 high-rate GPS 자료처리 (A High-rate GPS Data Processing for Large-scale Structure Monitoring)

  • 배태석
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.181-182
    • /
    • 2010
  • For real-time displacement monitoring of large-scale structures, the high-rate (>1 Hz) GPS data processing is necessary, which is not possible even for the scientific GPS data processing softwares. Since the baseline is generally very short in this case, most of the atmospheric effects are removed, resulting in the unknowns of position and integer ambiguity. The number of unknowns in real-time kinematic GPS positioning makes the positioning impossible with usual approach, thus two-step approach is tested in this study.

  • PDF

세 개의 트랜스폰더로 이루어진 장기선 위치추적장치의 민감도 해석 (Sensitivity Analysis of Long Baseline System with Three Transponders)

  • 김시문;이판묵;이종무;임용곤
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.27-31
    • /
    • 2003
  • Underwater acoustic navigation systems are classified into three systems: ultra-short baseline (USBL), short baseline (SBL), and long baseline (LBL). Because the USBL system estimates the angle of a submersible, the estimation error becomes large if the submersible is far from the USBL transducer array mounted under a support vessel. SBL and LBL systems estimate submersible's location more accurately because they have wider distribution of measuring sensors. Especially LBL systems are widely used as a navigation system for deep ocean applications. Although it is most accurate system it still has estimation errors because of noise, measurement error, refraction and multi-path of acoustic signal, or wrong information of the distributed transponders. In this paper the estimation error of the LBL system are analyzed from a point of sensitivity. It is assumed that the error exists only in the distance between a submersible and the transponders. For this purpose sensitivity of the estimated position with respect to relative distances between them is analyzed. The result says that estimation error is small if the submersible is close to transponders but not near the ocean bottom.

  • PDF

궤도력에 따른 장기선 GPS 이동측량의 정확도 분석에 관한 기초연구 (A Base Study on the Accuracy Analysis of GPS Kinematic Surveying of the Long-Baseline According to the Ephmeris)

  • 강준묵;이용욱;박정현
    • 한국측량학회지
    • /
    • 제18권2호
    • /
    • pp.121-127
    • /
    • 2000
  • 단시간 관측으로 많은 3차원 지형정보를 획득할 수 있는 GPS 이동측량은 수 km 이하의 단기선에서 주로 활용되고 있으며, 장기선에 대한 위치결정은 비교적 오랜 시간이 요구되는 정지 측량에 의존하고 있어 단시간으로 장기선 위치결정을 할 수 있는 방법이 요구되고 있다. 본 연구는 장기선에 대한 GPS 이동측량의 적용가능성을 검토하기 위하여 수 십 km 이상의 기선에 대한 기선거리별, 궤도력별 그리고 관측시간대별로 GPS 이동측량의 기선해석 정확도를 정지측량 결과와 비교ㆍ분석하고자 한다. 연구결과, PDOP이 4이하로 매우 양호한 경우 기선길이 약 60 km이하에서 신속정밀궤도력을 이용하면 수 분의 GPS측량으로 3차원 지형정보 획득이 가능할 것으로 기대되며, IGS의 최종 정밀궤도력을 적용한 경우와 유사한 정확도 획득이 가능함을 알 수 있었다. 앞으로 장기선 GPS 이동측량에 대한 더욱 심도 있는 연구가 진행된다면 국토개발을 비롯한 각종 건설분야에 필요한 지형정보를 보다 효율적으로 획득할 수 있을 것으로 기대된다.

  • PDF

Studying the Ephemeris Effect on Position Accuracy Based on Criteria Applied to Baseline Lengths by New MATLAB Program (NMP)

  • Shimaa Farouk;Mahmoud El-Nokrashy;Ahmed Abd-Elhay;Nasr Saba
    • Journal of Astronomy and Space Sciences
    • /
    • 제40권3호
    • /
    • pp.113-122
    • /
    • 2023
  • Although the Relative Global Navigation Satellite System (GNSS) positioning technique provides high accuracy, it has several drawbacks. The scarcity of control points, the long baselines, and using of ultra-rabid and rabid products increased position errors. This study has designed a New MATLAB Program that helps users automatically select suitable IGS stations related to the baseline lengths and the azimuth between GNSS points and IGS stations. This study presented criteria for the length of the baselines used in Egypt and an advanced estimated accuracy before starting the project. The experimental test studies the performance of the position accuracy related to the relation between three factors: observation session, final, rabid, and ultrarabid products, and the baseline lengths. Ground control point mediates Egypt was selected as a test point. Nine surrounding IGS stations were selected as reference stations, and the coordinates of the tested point were calculated based on them. Baselines between the tested point and the IGS stations were classified regarding proposal criteria. The coordinates of the tested point were obtained in different observation sessions (0.5, 1, 2, 4, 5, 6, 7, 7.5 h). The results indicated that the lengths of the baseline in Egypt were classified short (less than 600 km), medium (600-1,200 km), and long (greater than 1,200 km) and required a minimum observation time of 4, 5, and 7 h to obtain accuracy 10, 19, 48 mm sequentially. The position accuracy was superior for the rapid and the final than the ultra-rapid products by 16%. A short baseline was at the best case; there was a performance in position accuracy with a 57% deduction in observation time compared with the long baseline.