• Title/Summary/Keyword: Shoot and Root

Search Result 1,202, Processing Time 0.031 seconds

Effect of Plasma-activated Water Process on the Growth and Functional Substance Content of Lettuce during the Cultivation Period in a Deep Flow Technique System (담액수경재배 시스템에서 플라즈마수 처리가 상추의 생육 및 페놀류 함량에 미치는 영향)

  • Noh, Seung Won;Park, Jong Seok;Kim, Sung Jin;Kim, Dae-Woong;Kang, Woo Seok
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.464-472
    • /
    • 2020
  • We suggest a hydroponic cultivation system combined with a plasma generator to investigate the changes in the growth and functional substance content of lettuces during the cultivation period. Lettuce seedlings of uniform size were planted in semi-DFT after seeding for 3 weeks, and the plasma-activated water was intermittently operated for 1 hour at an 8 hours cycle for 4 weeks. Lettuces grew with or without plasma-activated water with the nutrient solution in hydroponics culture systems. Among the reactive oxygen species generated during plasma-activated water treatment, brown spots and necrosis appeared in the individuals closer to the plasma generating device due to O3, and there was no significant difference in the growth parameters. While the rutin and total phenolic content of the lettuce shoot grown in the nutrient solution were higher than that of the plasma-activated water, epicatechin contents in plasma-activated water were significantly greater than the nutrient solution. However, in the roots, all kinds of secondary metabolites measured in this work, rutin, epicatechin, quercetin, and total phenolic contents, were significantly higher in the plasma-activated water than the control. These results were indicated that the growth of lettuce was decreased due to the reactive oxygen species such as ozone in the plasma-activated water, but the secondary metabolites in the root zone increased significantly. It has needed to use this technology for the cultivation of root vegetables with the modified plasma-activated water systems to increase secondary metabolite in the roots.

Tolerance Mechanism to Simazine in Coix lacryma-jobi (율무(Coix lacryma-jobi)의 제초제 Simazine에 대한 내성기구)

  • Ma, Sang-Yong;Kim, Jong-Seok;Chun, Jae-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 1997
  • Tolerance mechanism to simazine (6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine) in Coix lacryma-jobi was investigated with respect to herbicide detoxification via glutathione conjugation. Simazine was initially absorbed by seedlings of C. lacryma-jobi and corn, but after 12 hours of treatment, no significant difference in simazine absorption was found in both species. Simazine absorbed was rapidly metabolized to glutathione-simazine conjugate. One to six hours after treatment, metabolism was approximately 2-fold faster in C. lacryma-jobi than in corn. Glutathione content was found 1.5- and 2.3-fold higher in coleoptile and root of C. lacryma-jobi, respectively, compared with corn. In both species, the highest concentration of glutathione was found in coleoptile tissue. Glutathione S-transferase that exhibits activity with 1-chloro-2,4-dinitrobenzene was not significantly different between two species. However, glutathione S-transferase activity with simazine was approximately 2-fold greater in C. lacryma-jobi than in corn. The glutathione S-transferase activity was 20 to 30% greater in shoot of either species than in root. Fast protein liquid chromatography-anion exchange column was used to separate glutathione S-transferase isozymes in coleoptiles of C. lacryma-jobi and corn. A peak of glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene and two peaks of glutathione S-transferase activity with simazine from C. lacryma-jobi were coeluted with those from corn, but showed greater activity than in the case of corn. Another glutathione S-transferase isozyme that exhibits activity with simazine was detected in the elution of C. lacryma-jobi extract, but not in corn. Electron transport in chloroplast thylakoids isolated from leaves of both species was equally sensitive to simazine applied at 1 to 100 nM. These results indicate that the simazine tolerance in C. lacryma-jobi is due to its capacity to detoxify the herbicide via glutathione conjugation, which is positively correlated with the level of glutathione content and glutathione S-transferase activity.

  • PDF

Characteristics of Early Growth in Inbred Line of Dangyang Waxy Maize ("단양찰" 자식계통의 초기생육 특성)

  • Ji, Hee Chung;Kim, Choong-Soo;Lee, Hee-Bong
    • Korean Journal of Agricultural Science
    • /
    • v.33 no.2
    • /
    • pp.149-157
    • /
    • 2006
  • The objective of this research was to know useful genetic characteristics for breeding program of corn. These materials were inbreds after selfing of six or eight generations and had useful genetic informations. The emergence of Danyang Waxy Corn was faster than those of other inbred lines at 2~3 days in field conditions. The plant height of Dangyang Waxy Corn was the highest at 8 days after emergence. However the plant height of New Dangjin was the shortest with 6.25cm at 8 days after emergence, the fresh weight of New Dangjin was 0.046g at 2 days after emergence but that of Dangyang was the heaviest with 0.180g. The fresh weight of 9 inbred lines had more increments in 2 days after emergence. The mean values of dry weight also showed similar trends in 9 inbred lines. The shoot dry weight of inbred lines, Dangyang and New Dangjin was 0.045g and 0.018g at 8 days after emergence, respectively. The root length of inbred line, Dangyang, was the longest with 64.4cm at 8 days after emergence. But the root length of New Dangjin was the shortest with 20.4cm at 8 days after emergence. The fresh weight of endosperm was 0.35g at 2 days after emergence and 0.26g at 8 days after emergence in Dangyang Waxy Corn, because of reduced nutrition of endosperm.

  • PDF

Genotypical Variation in Nitrate Accumulation of Lettuce and Spinach (상추와 시금치의 품종별 질산태 질소 축적 차이)

  • Chung, Jong-Bae;Lee, Yong-Woo;Choi, Hee-Youl;Park, Yong;Cho, Moon-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • In addition to the variation in nitrate accumulation of vegetables due to environmental conditions, there is also a distinct genetic variation. The variation of nitrate accumulation in some cultivars of lettuce and spinach commonly cultivated in Korea was investigated. Ten cultivars for both lettuce and spinach were grown in plastic containers filled with a 1:1 mixture of perlite and vermiculite with application of Hoagland No. 2 nutrient solution of high nitrate content (17.3 mM N) in a greenhouse condition. Plants were harvested four weeks after transplanting four-leaf stage seedlings. Plant growth was measured by fresh and dry matter of shoot, and contents of nitrate and other inorganic ions and organic solutes including sugar, amino acids and organic acids were measured. Large and significant genotypical variations in the nitrate content of the plants were found for both lettuce and spinach, and high negative correlations between nitrate content and fresh or dry weight were found in lettuce and spinach. Variation in nitrate accumulation of lettuce and spinach cultivars was not directly related to the differences in contents of organic and inorganic solutes, and this result indicates that photosynthesis and osmotic regulation are not directly related with the nitrate accumulation. Considering the correlations between nitrate content and plant growth of this study, it can be simply suggested that different cultivars of lettuce and spinach have their own inherited growth and physiological characteristics and also optimum nitrogen level required for the growth. Therefore when available nitrogen in root media is higher than the optimum level required for the inherited growth potential, some of the excess nitrate supplied can be accumulated in plants.

Effects of Green Manure Crops on Red-pepper Yields and Soil Physico-chemical Properties in the Vinyl House (시설재배지 녹비작물 재배가 고추의 수량과 토양 이화학성에 미치는 영향)

  • Yang, Seung-Koo;Seo, Youn-Won;Lee, You-Seok;Kim, Hyun-Woo;Ma, Kyung-Cheel;Lim, Kyeong-Ho;Kim, Hong-Jae;Kim, Jung-Guen;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.2
    • /
    • pp.215-228
    • /
    • 2011
  • To establish the organic cultivation of pepper using green manure crops, this work studied the growth characteristics and yield of green manure crops, mineral composition of green manure crops, mineral uptake in shoots of green manure crops, chemical composition in soil of green manure crops, and the growth characteristics and yield of pepper in vinyl house. Shoot dry weight of green manure crops was higher level in Sorghum bicolor and Sorghum than in Crotalaria juncea and Glycine max. Also, the roots were spread deeply into soil in Sorghum bicolor and Sorghum. Density of root-knot nematodes in rhizosphere of green manure crops was significantly more decrease in Crotalaria juncea and Sorghum than in Glycine max and Sorghum bicolor. Total nitrogen and CaO content of green manure crops was significantly higher in Crotalaria juncea and Glycine max than in Sorghum bicolor and Sorghum. $K_2O$ content was significantly higher in Sorghum bicolor and Sorghum than in Crotalaria juncea and Glycine max. MgO content was not significant difference at all green manure crops. Cations content ratio of $K_2O$ : CaO : MgO was 3.4 : 1.4 : 1. Total nitrogen uptake in shoots of green manure crops was high level in Glycine max, Sorghum bicolor and Sorghum compared with in Crotalaria juncea. $K_2O$ and MgO uptake was significantly higher in Sorghum bicolor and Sorghum than in Crotalaria juncea and Glycine max. Value of pH in soil of green manure crops was more increase in Crotalaria juncea and Glycine max than in Sorghum bicolor, Sorghum and control, but after cultivation of pepper pH in soil was recovered with initial soil pH before seeding of green manure crops. EC value in control, green manure crops, and pepper cultivation decreased by 44%, 15~18%, and 38~61% level, respectively, compared with initial soil of green manure crops treatment. K content in soil of control, Crotalaria juncea and Glycine max cultivation was increased by 14%, but the K content in soil of Sorghum bicolor and Sorghum decreased by 24~38%. Cation exchange capacity (CEC) in soil of Crotalaria juncea and Sorghum bicolor decreased by 11%, but CEC in soil of Glycine max, Sorghum and control increased by 11%. Harvest fruit yield was higher in Crotalaria juncea, Glycine max, and Sorghum bicolor cultivation than in control and Sorghum.

Interactions among Carbon Isotope Discrimination, Water Use Efficiency and Nitrogen Nutrition in Wheat and Barley (밀과 보리에 있어서 탄소동위원소차별, 수분이용효율, 질소영양간의 상호작용)

  • Young Kil, Kang;Richard A., Richards;Anthony G., Condon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.3
    • /
    • pp.318-331
    • /
    • 1996
  • Large and small seeds (44 and 22 mg per caryopsis) of a spring wheat (cv. Kulin) and a spring barley (cv. Skiff) were sown at two nitrogen rates (equivalent to 10 and 32 g m$^{-2}$ ) in well-watered pots under outdoor conditions to determine the effects of seed size and nitrogen (N) nutrition on water use efficiency (WUE) and carbon isotope discrimination ($\Delta$) and to evaluate interaction among $\Delta$, WUE and N nutrition in wheat and barley. Barley produced, on average, 105% more biomass (root+shoot dry weight) than wheat at stem elongation because of early vigor. By anthesis this difference had disappeared as wheat had 16% more biomass than barley which headed 3 days earlier. Compared to plants grown from small seed, plants grown from large seed had much greater biomass in wheat than in barley at stem elongation and anthesis. Higher N nutrition increased average biomass of wheat and barley by 40 and 31%, respectively, at anthesis. Barley had 35 and 20% greater WUE (biomass gained/transpiration) than wheat at stem elongation and anthesis, respectively, and 2.0 to 3.6% lower $\Delta$ in aboveground shoots depending on growth stages and plant parts than wheat which had a greater stomatal conductance than barley. Seed size had a variable effect on WUE and did not affected $\Delta$ values. Water use efficiency was not affected by N rate at stem elongation in wheat and barley whereas WUE was increased 2 and 7%, respectively, in wheat and barley at anthesis with increasing N from 10 to 32 g m$^{-2}$ . High N plants had about 2.5% lower $\Delta$ values regardless of growth stages than low N plants across species and seed sizes. Carbon isotope discrimination was negatively correlated with WUE at anthesis but not at stem elongation.

  • PDF

Biocontrol of Damping-Off(Rhizoctonia solani) in Cucumber by Trichoderma asperellum T-5 (Trichoderma asperellum T-5를 이용한 오이 모잘록병(Rhizoctonia solani)의 생물학적 제어)

  • Ryu, Ji-Yeon;Jin, Rong-De;Kim, Yong-Woong;Lee, Hyang-Burm;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.185-194
    • /
    • 2006
  • A fungal strain of Trichoderma having strong chitinolytic activity was isolated from field soil enriched with crabshell for several years. Based on 5.8S rRNA, partial 18S, 28S rRNA genes, ITS1, ITS2 sequence analysis and morphological characteristics, the fungus was identified as Trichoderma asperellum and named as Trichoderma asperellum T-5 (TaT-5). The fungus released lytic enzymes such as chitinase and ${\beta}$-1, 3-glucanse, and produced six antifungal substances in chitin broth medium. To demonstrate the protective effect of TaT-5 against damping-off in cucumber plant caused by Rhizoctonia solani, TaT-5 culture broth (TA), chitin medium (CM) and distilled water (DW) were applied to each pot at 10 days after sowing, respectively. Then, the homogenized hyphae of R. solani were infected to each pot at 1 week after TaT-5 inoculation. During experimental period, fresh weight of shoot and root in cucumber plant more increased at TA treatment compared to other treatments. PR-proteins (${\beta}$-1, 3-glucanase and chitinase) activities in cucumber leaves markedly increased at CM and DW treatments, but the activity slightly increased and then decreased at TA treatment at 3 days after infection of R. solani. The activity of PR-proteins activities in cucumber roots at all treatments decreased with time where the degree of decrement was more alleviated at TA treatment than CM and DW. These results suggest that the lytic enzymes (chitinase and ${\beta}$-1, 3-glucanse) and antifungal substances produced by TaT-5 can reduce the pathogenic attack by R. solani in cucumber plants.

Growth Characteristics of Cucumber Scion and Pumpkin Rootstock under Different Levels of Light Intensity and Plug Cell Size under an Artificial Lighting Condition (인공광형 폐쇄형 육묘시스템 내 광량 및 플러그 트레이 규격에 따른 오이 접수 및 호박대목의 생육특성)

  • Jang, Yoonah;Lee, Hye Jin;Choi, Chang Sun;Um, Yeongcheol;Lee, Sang Gyu
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.383-390
    • /
    • 2014
  • This study was conducted to investigate the growth characteristics of cucumber scion and pumpkin rootstock under different levels of light intensity (photosynthetic photon flux, PPF) and plug cell size in a closed transplant production system with artificial lighting. Cucumber scion and pumpkin rootstock seedlings were grown under the combinations of three levels of PPF (PPF 165, 248, and $313{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and five types of plug tray (50, 72, 105, 128, and 200 cells in the tray) for nine days. The shoot dry weight and relative growth rate increased with increasing PPF and plug cell size. As PPF increased, cucumber scion and pumpkin rootstock seedlings had higher dry matter, lower specific leaf area, and lower hypocotyl length. The first true leaf of cucumber scion and pumpkin rootstock unfolded at eight and seven days after sowing, respectively, except the treatment using 200-cell plug tray. The unfolding of first true leaf of seedlings grown in 200-cell plug tray was delayed by one day. Accordingly, it was considered that the use of small cell size such as 200-cell plug tray would require more time for the production of scion and rootstock. Based on the results, we suggest that cucumber scion and pumpkin rootstock be grown in 105-cell to 128-cell plug tray for eight days and 72-cell to 105-cell plug tray for seven days, respectively, when using splice grafting method with root-removed rootstock. Additionally, higher PPF is suggested to improve the growth and quality of scion and rootstock.

Effects of Simulated Acid Rain on Growth and Physiological Characteristics of Ginkgo biloba L. Seedlings and on Chemical Properties of the Tested Soil -I. Seed Germination and Growth (인공산성우(人工酸性雨)가 은행(銀杏)나무(Ginkgo biloba L.) 유묘(幼苗)의 생장(生長), 생리적(生理的) 특성(特性) 및 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響) -I. 종자발아율(種子發芽率)과 생장(生長))

  • Kim, Gab Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.2
    • /
    • pp.99-108
    • /
    • 1987
  • Half-sib seeds and one-year-old seedlings of Ginkgo biloba were treated with various simulated acid rains (pH 2.0, pH 3.0, pH 4.0 and pH 5.0) to examine the effects of acid rain on seed germination and seedling growth. The seeds were sown in a pot ($4500cm^3$) containing one of three different soils (nursery soil, mixed soil and sandy soil) and the seedlings were grown in the same pots as the seeds. Simulated acid rain was made by diluting sulfuric and nitric acid solution ($H_2SO_4$: $HNO_3$ = 3:1, V/V) with tap water and tap water (pH6.4), and treated by 5mm each time for three minutes during the growing seasons (April to October 1985 and April to August 1986). Acid rain treatments were done three times per week to potted seeds and seedlings by spraying the solutions. The seed germination, seedling growth and physiological characteristics of potted seedlings were compared among three soil types as well as among the various pH levels. The results obtained in this study were as follows: 1. Seed germination of Ginkgo biloba decreased significantly at pH 2.0 level in the field test, and also at the levels of both pH 2.0 and pH 3.0 in the laboratory test, compared to that at control. 2. For two-year-old seedlings, total, top and root dry weights per seedling were significantly different among the three soil types and among the levels of pH, and shoot growth was different only among the levels of pH. 3. For one-year-old seedlings, height and total and stem-branch dry weights per seedling were significantly different among the levels of pH.

  • PDF

Germination Responses and Early Growth of Allium thunbergii by Temperature and Shading Level (온도와 차광수준에 따른 산부추의 발아반응 및 초기생육)

  • Jeon, Kwon-Seok;Song, Ki-Seon;Choi, Kyu-Seong;Kim, Chang-Hwan;Park, Yong-Bae;Kim, Jong-Jin
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.178-186
    • /
    • 2015
  • This study was carried out to determine the effects of environment controls (temperature and shading level) on germination responses and early growth of Allium thunbergii. Germination experiment was performed by pre-treatment (with low temperature and wetting treatments for 0, 20, 40 and 60 days) and temperature controls (5, 10, 15, 20, 25 and 30). And growth experiment was performed by containers (128 and 200 cavities containers) and shading level (full sunlight (control), 35%, 50% and 75% shading). Germination rate of A. thunbergii seeds were, 20 days of seed pre-treatment, the highest at $10^{\circ}C$ (81.7%) and the more temperature went up, the more germination rate went down. As a result of surveying container and shading treatments, the height, leaf area, leaf length, leaf aspect ratio (L/W) were higher under 50% shading of 128 (24.2cm, $2.76cm^2$, 22.3cm and 223.4, respectively) and 200 (22.6cm, $2.29cm^2$, 19.4cm and 190.5, respectively) cavities container. The root was grown well under full sunlight. Specially, fresh weight of shoot (leaves+stem) was higher under 50% shading of 128 (0.241g) and 200 (0.212g) cavities container. As a result of surveying the whole experiment, A. thunbergii seeds need to pre-treatment (with low temperature and wetting treatments for 20~40 days) for high germination rate. And it is judged better growth and higher yield by maintaining 50% shading of 200 cavities container.