• Title/Summary/Keyword: Shoe Wear

Search Result 41, Processing Time 0.023 seconds

Increasing the attractiveness of physical education training with the involvement of nanotechnology

  • Jinyan Ge;Yuxin Hong;Rongtian Zeng;Yunbin Li;Mostafa Habibi
    • Advances in concrete construction
    • /
    • v.16 no.6
    • /
    • pp.291-302
    • /
    • 2023
  • As the first part of the body that strikes the ground during running, sports shoes are especially important for improving performance and reducing injuries. The use of new nanotechnology materials in the shoe's sole that can affect the movement angle of the foot and the ground reaction forces during running has not been reported yet. It is important to consider the material of the sole of the shoe since it determines the long-term performance of sports shoes, including their comfort while walking, running, and jumping. Running performance can be improved by polymer foam that provides good support with low energy dissipation (low energy dissipation). Running shoes have a midsole made of ethylene propylene copolymer (EPP) foam. The mechanical properties of EPP foam are, however, low. To improve the mechanical performance of EPP, conventional mineral fillers are commonly used, but these fillers sacrifice energy return. In this study, to improve the magnificence of physical education training with nanotechnology, carbon nanotubes (CNTs) derived from recycled plastics were prepared by catalytic chemical vapor deposition and used as nucleating and reinforcing agents. As a result of the results, the physical, mechanical, and dynamic response properties of EPP foam combined with CNT and zinc oxide nanoparticles were significantly improved. When CNT was added to the nanocomposites with a weight percentage of less than 0.5 wt%, the wear resistance, physical properties, dynamic stiffness, compressive strength, and rebound properties of EPP foams were significantly improved.

A Comparative Analysis on Changes of Foot Pressure by Shoe Heel Height during Walking (하이힐 굽 높이에 따른 보행 시 족저압 변화 비교 분석)

  • Park, Jong-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.771-778
    • /
    • 2009
  • We aimed to determine the effect of heel height on foot pressure by comparing and analyzing data on foot pressure in shoes with different heel heights. Qn the basis of a previous study, we selected 3cm and 7cm as the shoe heel heights preferred by female college students. We divided 10 female students into forefoot and hindfoot to measure vertical force, maximum pressure, and average pressure. The average pressure on the forefoot was higher and that on the hindfoot was lower in the case of 7cm high-heeled shoes. The maximum pressure on the forefoot was significantly higher in the case of the 7cm heel height (p<.05). The vertical force, maximum pressure, and average pressure on the hindfoot were also significantly higher in the case of the 7cm heel height (p<.05). The results showed that wearing 7cm high-heeled shoes exerted greater maximum pressure on the forefoot and greater vertical force, maximum pressure, and average pressure on the Hndfoot. This leads to increase in confining pressure caused by high pressure distribution over the forefoot and increase in the pressure on the hindfoot, which may cause deformation of toes and heel pain over a long period. Therefore, female college students who wish to wear high heels are recommended to wear 3cm high-heeled shoes rather than 7cm high-heeled shoes.

A analysis of friction relation between tennis outsole and tennis playing surfaces (테니스화겉창과 테니스 스포츠바닥재간의 마찰관계상관 분석)

  • Kim, Jung-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.361-380
    • /
    • 2002
  • The purposes of this study were to a analysis of friction relation between tennis outsole and tennis playing surfaces. Tennis footwear is an important component of tennis game equipment. It can support or damage players performance and comfort. Most importantly athletic shoes protect the foot preventing abrasions and injuries. Footwear stability in court sports like tennis is incredibly important since it is estimated that as many as 45% of all lower extremity injuries occur in the foot and ankle. The friction force is the force exerted by a surface as an object moves across it or makes an effort to move across it. The friction force opposes the motion of the object. Friction results when two surfaces are pressed together closely, causing attractive intermolecular forces between the molecules of the two different surfaces. The outsole provides traction and reduces wear on the midsole. Today's outsoles address sport specific movements (running versus pivoting) and playing surface types. Different areas of the outsole are designed for the distinct frictional needs of specific movements. Traction created by the friction between the outsole and the surface allows the shoe to grip the surface. As surfaces, conditions and player motion change, traction may need to vary. An athletic shoe needs to grip well when running but not when pivoting. Laboratory tests have demonstrated force reductions compared to impact on concrete. There is a correlation between pain, injury and surface hardness. These are a variety of traction patterns on the soles of athletic shoes. Traction like any other shoe characteristic must be commensurate and balanced with the sport. The equal and opposite force does not necessarily travel back up your leg. The surface itself absorbs a portion of the force converting it to other forms of energy. Subsequently, tennis court surfaces are rated not only for pace but also for the percentage of force reduction.

Relationship of Types of Foot Shape and Favorite Shoes Shape of Female University Students (여대생의 발 유형과 선호 구두 형태와의 관계)

  • Lee, Jin-Hee;Kim, Kyung-Hee
    • Korean Journal of Human Ecology
    • /
    • v.12 no.1
    • /
    • pp.75-84
    • /
    • 2003
  • The objective of this paper was to analyse the foot type of female university students by the direct and indirect measure of foot and the measures of foot outline. The results were as follow: 1. The length and the width of foot were small and ankle slender and the modification of the big toe slight. 2. The analysis on the 16 measure items revealed five factors; the first factor was related to the width and girth of foot, the second one to the length of foot, the third one to the transformation of the little toe, the fourth one to the height of foot, the fifth one to transformation of the big toe. 3. The grouping on the shape of foot revealed three types. The inline angle of foot was the smallest in average in the type 1, while it appeared to be middle in the other types. The wider foot shapes were grouped as type 2 because their inline and outline angles of foot were the biggest in average. In the type 3, the big toe was curved a lot, since it was the largest in average. 4. From the naked eye measuring method, classification from which toe was popped-out told that Egyptian foot was 30.9%, Greek foot 27.9%. On the other hand, the instrumental method showed that Egyptian foot was 57.3%, Squared foot 35.3% and Greek foot 7.4%. 5. The result from the analysis about the traits of foot shape by the degree of the arch formation of bottom foot, showed that 33.8% had the normal foot, 66.2% slightly flat foot or middle one. There was no one with rigid flat foot. 6. The shoes size they declared were that 240cm was 33.3%, 235cm 18.1% and 245cm 18.1%. The shape of their shoe heel were flat heel(34.8%), cuban heel(25.5%), and narrow straight heel(19.9%); and that of the shoe toe were round toe(25.4%), oval toe(20.4%) and squared toe(20.4%). 7. The discomforting parts when they wear shoes were the little toe(35.4%), the rear of foot(13.9%), and the width of foot(13.9%), which was related to their dislike of shoe with the pointed toe.

  • PDF

A Study on the Establishment of Disc Braking Force Pattern to reduce the Wear Mass of Pad (패드 마모량 감소를 위한 디스크 제동력 패턴 설정에 관한 연구)

  • Kim, Seog-Won;Kim, Young-Guk;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.786-791
    • /
    • 2007
  • Korean high speed train(HSR-350x) has adopted a combined electrical and mechanical(friction) braking system. Brake blending control unit(BBCU) controls each brake system to fulfill the required brake performances such as braking distance, deceleration and jerk. Also the braking system should be designed considering the economical management, such as effective use of generated braking energy and the minimum wear of friction materials(a pad and a brake shoe). In this paper, we establish the disc braking force pattern that reduces the wear of pad in the disc braking system by minimizing the variance of the instantaneous disk baking energy during braking time, and compare the wear mass of pad between the conventional disc braking force pattern and the established results.

  • PDF

The Research of the Insole Suitability in Accordance with Foot Characteristics of Women (성인 여성의 발 특성에 따른 인솔 적합성 연구)

  • Choi Soon-Bok;Lee Won-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.6
    • /
    • pp.783-792
    • /
    • 2005
  • The purpose of this research is to develop appropriate Insole according to foot characteristics of female adults. This research concentrates on proving the effectiveness of Insole on resolving foot discomforts by analyzing the differences between the fitting and foot pressure before and after wearing Insole. Among 216 female testers of previous research, six testers wear selected and placed into six different groups classified according to foot discomforts and foot characteristics. After wearing Insole, the results indicates that the entire groups represented the improvement of fitting and the mitigation of foot discomfort. The results of foot pressure experiment shows that the maximum pressure of foot spreads out evenly after wearing Insole, which indicates the effectiveness of Insole. This efficacy works particularly well for foot testers of second and sixth group. The results indicate that group 6, which consist of the flat-footed and the old, have more noticeable effects derived from Insole, whereas group 3 and 5 do not, due to its constitution of people with fairly normal feet. Furthermore, it was evident that maximum pressure played a major role in proving the beneficial effects of Insole, one of which is to scatter the maximum pressure of heel away and lessen the foot pressure of plantar.

A Study of In-sole Plantar Pressure Distribution in Functional Tennis Shoes (기능성 전문테니스화의 족저압력분포 분석)

  • Lee, J.S.;Kim, Y.J.;Park, S.B.
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.99-118
    • /
    • 2004
  • The aim of this study is to evaluate tennis shoes's plantar pressure distribution in tennis prayers and to determine the influence of the shoe on various tennis movements. When investigating the biomechanics of movement in tennis, one of the first things to do is to understand the movement patterns of the sport, specifically how these patterns relate to different tennis shoes. Once these patterns are understood, footwear company can design tennis shoes that match the individual needs of tennis players. Plantar pressure measurement is widely employed to study foot function, the mechanical pathogenesis for foot disease and as a diagnostic and outcome measurement tool for many performance. Measurements were taken of plantar pressure distribution across the foot and using F-Scan(Tekscan Inc.) systems respectively. The F-Scan system for dynamic in-shoe foot pressure measurements has enabled us to assess quantitatively the efficacy of different types of footwear in reducing foot pressures. The Tekscan F-Scan system consists of a flexible, 0.18mm thick sole-shape having 1260 pressure sensors, the sensor insole was trimmed to fit the subjects' right, left shoes. For this study 4 university male, high level tennis players were instructed to hit alternated forehand stroke, backhand stroke, forehand volley, backhand volley, smash, service movement in 4 different tennis shoes. 1. When impact in tennis movement, peak pressure distribution of landing foot displayed D>C>B>A, A displayed the best low pressure distribution. A style's tennis shoes will suggest prayer with high impact. If prayer with high impact feeling during pray in tennis wear A style, it will decrease injury, will have performance improvement. 2. When impact in tennis movement, plantar pattern of pressure distribution in landing foot displayed B>A>C>D in stability performance. During tennis, prayer want to stability movement suggest B style tennis shoes when tennis movement impact keep stability of human body. B style tennis shoes give performance improvement 3. When impact in tennis movement, plantar pattern of center of force(C.O.F.)trajectory in landing foot analyzed this : 1) When stroke movement and volley movement in tennis, prayer better to rearfoot movement. 2) when service movement, prayer midfoot strike movement. 3) when smash movement, prayer have forefoot strike movement.

Comparison the Muscle Activation in the Trunk and Lower Limbs of Subjects Wearing High-Heeled or Flat Shoes While Crossing Over Obstacles of Different Heights

  • Park, Jin-Seong;Han, Jin-Tae
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.85-91
    • /
    • 2017
  • PURPOSE: The purpose of this study was to compare muscle activation of the trunk and lower limbs of subjects wearing high-heeled or flat shoes while crossing over obstacles of different heights. METHODS: Twenty subjects participated in this study. While wearing high-heeled shoes (7 cm) or flat shoes (0 cm), the subjects were asked to cross over obstacles of different heights (10%, 20%, and 30% of their lower-limb length). Muscle activation of the trunk and lower limbs with the supported side while crossing over obstacles of different heights was measured using the electromyogram (Noraxon, DTS, Germany). Two-way repeated ANOVA was used to compare the muscle activation between high-heel shoes and flat shoes while crossing over obstacles of different heights. All statistical analyses were performed using SPSS ver. 21, and p-values less than .05 were used to identify significant differences. RESULTS: As an obstacle's height increased, muscle activation of the trunk and lower limbs with the supported side was increased while wearing either type of shoe, and it was generally higher while wearing high-heeled shoes. However, tibialis anterior muscle activity while wearing high-heeled shoes was lower than while wearing flat shoes. CONCLUSION: This study showed that muscle activation of the trunk and lower limbs was higher when subjects wore high-heeled shoes than when they wore flat shoes while crossing over obstacles of different heights. Therefore, high-heeled shoes can easily cause high muscle fatigue of the trunk and lower limbs, and the TA muscle may weaken in persons who wear high-heeled shoes.

Effects of 12-week Wearing of the Unstable Shoes on the Standing Posture and Gait Mechanics (12주간의 불안정성 신발 착용이 직립 자세 및 보행역학에 미치는 영향)

  • Park, Ki-Ran;An, Song-Yi;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.165-172
    • /
    • 2006
  • The purpose of this study was to determine effects of 12-week wearing of unstable shoe on the standing posture and gait mechanics. Nine healthy men were asked to wear the unstable shoes for 12-week and walk for 30 minute everyday. Their standing posture and gait mechanics were measured before and after treatment. Standing posture was measured for each side(anterior, posterior, lateral) for standing position. And gait analysis was measured joint angle of a right lower limb between first right heel contact and second right heel contact. Kinematic data were collected using video camera at 30 frame per seconds. Statistical analysis was paired t-test(p<.05) to compare before training with after that. A head tilt angle was significantly decreased for posterior side(p<.05). The angle of between center of line and surface was significantly decreased at midstance and take off during walking(p<.05). Ankle dorsiflexion significantly increased at heel contact2(p<.05) and ankle plantarflexion significantly increased at midstance and midswing(p<.05). The increase of ankle dorsiflexion showed that our results consisted with previous study. In conclusion, there was not large significant difference in static standing posture but joint angle of lower limb represented many changes with increasing of ankle motion during walking. These were of benefit to body by increasing leg muscle activity but it was necessary for man having a ankle problem to consider. Further studies concerning optimum outsole angle of unstable shoes are necessary.

A Comparative Study on the Footwear Wearing Practices and Preferences of Young and Elderly Women (청년층과 노년층 여성의 신발 착용 실태 및 선호도에 관한 비교 연구)

  • Kook, Young-ji;Lim, Ho-sun
    • Fashion & Textile Research Journal
    • /
    • v.22 no.2
    • /
    • pp.202-208
    • /
    • 2020
  • This study is to help produce highly comfortable and wearable and footwear based on the establishment of basic data for manufacturing elderly footwear patterns and products. For this, a survey of 207 women in their 20s and 60-70s was conducted to identify the wearing of shoes, inconvenience areas, purchase practices and footwear preferences by age group. The results are as follows. First, the average age of the young female group was 22.5 years old, the elderly female group was 68.8 years old, and the average shoe size was 236.3 mm for the young female group and 238.3 mm for the elderly female group. Second, young women wore shoes for a longer time than elderly women, resulting in swollen and numb legs, hardened soles, uncomfortable toes and sore heels. However, elderly women felt more uncomfortable wearing footwear than young women. They suffered pain in the joint area, heal and toe areas as well as had more toe deformations due to aging. Third, all age groups preferred athletic shoes and loafers as well as purchases from footwear brand stores and department stores. The elderly spent more money on shoes, longer time to buy and valued the feeling of wearing, whereas the young considered design first. Fourth, both age groups prefer low-heels and natural leather, the young preferred to wear various types of shoes; however, the elderly are found to desire shoes that are comfortable and stable in both form and wearing.