• Title/Summary/Keyword: Shock physics

Search Result 146, Processing Time 0.021 seconds

How Much Do We Understand the Properties of Supernova Remnants in M81 and M82?

  • Sohn, Jubee;Lee, Myung Gyoon;Lee, Jong Hwan;Lim, Sungsoon;Jang, In Sung;Ko, Youkyung;Koo, Bon-Chul;Hwang, Narae;Kim, Sang Chul;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2015
  • We present an optical spectroscopic study of 28 supernova remnant (SNR) candidates in M81 and two SNR candidates in M82. The optical spectra of these SNR candidates were obtained using the MMT/Hectospec as a part of the K-GMT Science Program. Based on the [S II]/$H{\alpha}$ ratio and the radial velocity, we find that twenty six out of the M81 candidates are genuine SNRs. Two SNR candidates in M82 are thought to be shocked condensations in the galactic outflow or SNRs. In the spectral line ratio diagrams, M81 SNRs are divided into two groups: an [O III]-strong group and an [O III]-weak group. The [O III]-weak SNRs have larger sizes, and may have faster shock velocity. We estimate the nitrogen and oxygen abundance of the SNRs from the comparison with shock-ionization models. We find a radial gradient in nitrogen abundance, $dLog(N/H)/dlogR=-0.023{\pm}0.009\;dex\;kpc^{-1}$ little evidence for the gradient in oxygen abundance. The nitrogen abundance shows shallower gradient than those of the planetary nebulae and H II regions of M81. We find five X-ray emitting SNRs. Their X-ray hardness colors are consistent with thermal SNRs.

  • PDF

THE ACCELERATION AND TRANSPORT OF COSMIC RAYS WITH HELIOSPHERIC EXAMPLES

  • JOKIPII J. R.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.399-404
    • /
    • 2004
  • Cosmic rays are ubiquitous in space, and are apparently present wherever the matter density is small enough that they are not removed by collisions with ambient particles. The essential similarity of their energy spectra in many different regions places significant general constraints on the mechanisms for their acceleration and confinement. Diffusive shock acceleration is at present the most successful acceleration mechanism proposed, and, together with transport in Kolmogorov turbulence, can account for the universal specta. In comparison to shock acceleration, statistical acceleration, invoked in many situations, has significant disadvantages. The basic physics of acceleration and transport are discussed, and examples shown where it apparently works very well. However, there are now well-established situations where diffusive shock acceleration cannot be the accelerator. This problem will be discussed and possible acceleration mechanism evaluated. Statistical acceleration in these places is possible. In addition, a new mechanism, called diffusive compression acceleration, will be discussed and shown to be an attractive candidate. It has similarities with both statistical acceleration and shock acceleration.

Tip Leakage Flow on the Transonic Compressor Rotor (천음속 회전익에서의 누설유동)

  • Park, JunYoung;Chung, HeeTaeg;Baek, JeHyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.244-249
    • /
    • 2002
  • It is known that tip clearance flows reduce the pressure rin, flow range and efficiency of the turbomachinery. So, the clear understanding about flow fields in the tip region is needed to efficiently design the turbomachinery. The Navier-Stokes code with the proper treatment of the boundary conditions has been developed to analyze the three-dimensional steady viscous flow fields in the transonic rotating blades and a numerical study has been conducted to investigate the detail flow physics in the tip region of transonic rotor, NASA Rotor 67. The computational results in the tip region of transonic rotors show the leakage vortices, leakage flow from pressure side to suction side and their interaction with a shock Depending on the operating conditions, the position of shock-wave on the blade surface are v8y different close to the blade tip of the transonic compressor rotor. The shock-wave position dose to the blade tip had the dose relationship with the starting position of leakage vortex and the direction of leakage flow.

  • PDF

Laser Supported Combustion Waves and Plasma Flows (고에너지펄스를 이용한 충격파 발생과 응용)

  • ;Choi, Ji-Hae;Gwak, Min-Cheol;Yoh, Jai-Ick
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.27-30
    • /
    • 2007
  • We have been setting up experiments on propagation of shock waves generated by the pulsed laser ablation. One side of a thin metal foil is subjected to laser ablation as a shock wave is generated from a localized spot of high intensity energy source. The resulting reactive shock wave, which penetrates through the foil is reflected by an acoustic impedance which causes the metal foil to high-strain rate deform. This short time physics is captured on an ICCD camera. The focus of our research is generating reactive shock wave and high strain rate deforming of thin metal foil for accelerating micro-particles to a very high speed on the orders of several thousand meter per second. Somce innovative applications of this device will be discussed.

  • PDF

Dark Matter Deficient Galaxies Produced via High-velocity Galaxy Collisions In High-resolution Numerical Simulations

  • Shin, Eun-jin;Jung, Minyong;Kwon, Goojin;Kim, Ji-hoon;Lee, Joohyun;Jo, Yongseok;Oh, Boon Kiat
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2020
  • The recent discovery of diffuse dwarf galaxies that are deficient in dark matter appears to challenge the current paradigm of structure formation in our Universe. We describe the numerical experiments to determine if the so-called dark matter deficient galaxies (DMDGs) could be produced when two gas-rich, dwarf-sized galaxies collide with a high relative velocity of ~ 300km/s. Using idealized high-resolution simulations with both mesh-based and particle-based gravito-hydrodynamics codes, we find that DMDGs can form as high-velocity galaxy collisions separate dark matter from the warm disk gas which subsequently is compressed by shock and tidal interaction to form stars. Then using a large simulated universe ILLUSTRISTNG, we discover a number of high-velocity galaxy collision events in which DMDGs are expected to form. However, we did not find evidence that these types of collisions actually produced DMDGs in the ILLUSTRISTNG100-1 run. We argue that the resolution of the numerical experiment is critical to realize the "collision-induced" DMDG formation scenario. Our results demonstrate one of many routes in which galaxies could form with unconventional dark matter fractions.

  • PDF

COSMIC RAY ASTROPHYSICS

  • DRURY L O'C
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.267-270
    • /
    • 1996
  • The problem of the origin of cosmic rays is considered in an astronomical context and the current observational situation summarised. The evidence for acceleration in supernova remnants is critically examined.

  • PDF

Accelerated Thermo-Mechanical Fatigue Life of Pb-Free Solder Joints for PZT Ceramic Resonator (PZT 세라믹 레조네이터 무연솔더 접합부의 열-기계적 피로 가속수명)

  • Hong, Won-Sik;Park, No-Chang;Oh, Chul-Min
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.337-343
    • /
    • 2009
  • In this study, we optimized Pb-free Sn/Ni plating thickness and conditions were optimized to counteract the environmental regulations, such as RoHS and ELV(End-of Life Vehicles). The $B_{10}$ life verification method was also suggested to have been successful when used with the accelerated life test(ALT) for assessing Pb-free solder joint life of piezoelectric (PZT) ceramic resonator. In order to evaluate the solder joint life, a modified Norris-Landzberg equation and a Coffin-Manson equation were utilized. Test vehicles that were composed of 2520 PZT ceramic resonator on FR-4 PCB with Sn-3.0Ag-0.5Cu for ALT were manufactured as well. Thermal shock test was conducted with 1,500 cycles from $(-40{\pm}2)^{\circ}C$ to $(120{\pm}2)^{\circ}C$, and 30 minutes dwell time at each temperature, respectively. It was discovered that the thermal shock test is a very useful method in introducing the CTE mismatch caused by thermo-mechanical stress at the solder joints. The resonance frequency of test components was measured and observed the microsection views were also observed to confirm the crack generation of the solder joints.

Solder Joints Fatigue Life of BGA Package with OSP and ENIG Surface Finish (OSP와 ENIG 표면처리에 따른 BGA 패키지의 무연솔더 접합부 피로수명)

  • Oh, Chulmin;Park, Nochang;Hong, Wonsik
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.80-87
    • /
    • 2008
  • Many researches related to the reliability of Pb-free solder joints with PCB (printed circuit board) surface finish under thermal or vibration stresses are in progress, because the electronics is operating in hash environment. Therefore, it is necessary to assess Pb-free solder joints life with PCB surface finish under thermal and mechanical stresses. We have investigated 4-points bending fatigue lifetime of Pb-free solder joints with OSP (organic solderability preservative) and ENIG (electroless nickel and immersion gold) surface finish. To predict the bending fatigue life of Sn-3.0Ag-0.5Cu solder joints, we use the test coupons mounted 192 BGA (ball grid array) package to be added the thermal stress by conducting thermal shock test, 500, 1,000, 1,500 and 2,000 cycles, respectively. An 4-point bending test is performed in force controlling mode. It is considered that as a failure when the resistance of daisy-chain circuit of test coupons reaches more than $1,000{\Omega}$. Finally, we obtained the solder joints fatigue life with OSP and ENIG surface finish using by Weibull probability distribution.

A PIC Simulation Study for Electron Preacceleration at Weak Quasi-Perpendicular Galaxy Cluster Shocks

  • Ha, Ji-Hoon;Kim, Sunjung;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.36.2-36.2
    • /
    • 2021
  • In the outskirts of galaxy clusters, weak shocks with Ms < ~3 appear as radio relics where the synchrotron radiation is emitted from cosmic-ray (CR) electrons. To understand the production of CR electrons through the so-called diffusive shock acceleration (DSA), the electron injection into the DSA process at shocks in the hot intracluster medium (ICM) has to be described. However, the injection remains as an unsolved, outstanding problem. To explore this problem, 2D Particle-in-Cell (PIC) simulations were performed. In this talk, we present the electron preacceleration mechanism mediated by multi-scale plasma waves in the shock transition zone. In particular, we find that the electron preacceleration is effective only in the supercritical shocks, which have the sonic Mach number Ms > Mcrit ≈ 2.3 in the high-beta (β~100) plasma of the ICM, because the Alfven ion cyclotron instability operates and hence multi-scale plasma waves are induced only in such supercritical shocks. Our findings will help to understand the nature of radio relics in galaxy clusters.

  • PDF

A Study of the Impulse Wave Discharged from the Exit of Two Parallel Tubes (두 평행한 관의 출구로부터 방출되는 펄스파에 관한 연구)

  • Kweon Yong-Hun;Kim Heuy-Dong;Lee Dong-Hun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.151-154
    • /
    • 2002
  • The twin impulse wave leads to very complicated flow fields, such as Mach stem, spherical waves, and vortex ring. The twin impulse wave discharged from the exits of the two tubes placed in parallel is investigated to understand detailed flow physics associated with the twin impulse wave, compared with those in a single impulse wave. In the current study, the merging phenomena and propagation characteristics of the impulse waves are investigated using a shock tube experiment and by numerical computations. The Harten-Yee's total variation diminishing (TVD) scheme is used to solve the unsteady, two-dimensional, compressible, Euler equations. The Mach number $M_{s}$, of incident shock wave is changed below 1.5 and the distance between two-parallel tubes, L/d, is changed from 1.2 to 4.0. In the shock tube experiment, the twin impulse waves are visualized by a Schlieren optical system for the purpose of validation of computational work. The results obtained show that on the symmetric axis between two parallel tubes, the peak pressure produced by the twin-impulse waves and its location strongly depend upon the distance between two parallel tubes, L/d and the incident shock Mach number, $M_{s}$. The predicted Schlieren images represent the measured twin-impulse wave with a good accuracy.

  • PDF