• Title/Summary/Keyword: Shock boundary layer interaction

Search Result 110, Processing Time 0.029 seconds

Study on the Affects of Mounting Axisymmetric Inlet to Airframe

  • Ando, Yohei;Matsuo, Akiko;Kojima, Takayuki;Maru, Yusuke;Sato, Tetsuya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.699-702
    • /
    • 2004
  • In this study, the affect of mounting axisymmetrical supersonic inlet to airfoil, which has 65 degree swept angle was numerically investigated. The parameter for this calculation are tree stream Mach number M=2.0 and 2.5, the distance between inlet spike and airfoil lower surface $L_{sw}$/$R_{cowl}$ = 1.21-1.54 and angle of attack to the airfoil 0-4. The mass capture ratio improved 3points in M=2.0 condition and 1points in M=2.5 while the mass capture ratio without airfoil surface was 57% and 71 % for each case. These are the result from increase of density and change of velocity deflection by the shock wave structure formed between inlet and airfoil surface. On the other hand, the distortion of Mach number at cowl lip plane increased by 13% in M=2.0, 3% in M=2.5 condition. The effects of the angle attack on the mass capture ratio is greater than that of the shock wave interaction between inlet and cowl, but the effects to the distortion is smaller in the range of this calculation condition. In the condition of M=2.0 with 4 degrees of angle of attack, inlet distortion of Mach number is mainly caused by the affects of the shock wave interaction between inlet and airfoil surface, while the largest angle of the velocity vector in the radial direction at cowl lip plane is caused by the affect of angle of attack. This large velocity vector made the flow inside the cowl subsonic and caused spillage, which interfere with the boundary layer of airfoil surface.

  • PDF

Flow Characteristics of 2 Dimensional Supersonic Nozzle in Overexpanded Conditions (2차원 초음속 노즐의 과대팽창 유동 특성)

  • 김성돈;정인석;최정열
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2002
  • In the modern propulsion systems, requited thrust is obtained using a nozzle. Sometimes shock and induced boundary layer separation is generated in an over-expanded convergent-divergent supersonic nozzle. It occurs because the nozzle expansion ratio is too large for a given nozzle pressure ratio (NPR). This phenomenon can be explained that it redefines effective nozzle geometry, shorer nozzle geometry and lower pressure ratio, in a given pressure ratio. Numerical studies were conducted about a fixed geometry 2D nozzle in overexpanded condition and compared with Hunter's experimental result. For the numerical simulation of the supersonic nozzle, Navier-Stokes equations are considered and as a turbulent model, $\kappa$-$\varepsilon$ /$\kappa$-$\omega$ blended SST two equation turbulent model is used. The characteristics of $\lambda$-shape shock systems due to the interaction of shock and boundary layer was investigated in a low NPR. And the result of comparison of thrust value shows that a fixed geometry nozzle can cover required flight mission.

An experimental study on the flow characteristics of a supersonic turbine cascade as the leading edge shape and the nozzle-cascade gap (초음속 터빈 익렬 앞전 형상 및 노즐-익렬 간격에 따른 유동 특성에 대한 실험적 연구)

  • Cho Jong-Jae;Kim Kui-Soon;Kim Jin-Han;Jeong Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.349-354
    • /
    • 2005
  • In this paper, a small supersonic wind tunnel is designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The flow is visualized by means of a single pass Schlieren system. The supersonic cascade with 2-dimensional supersonic nozzle was tested for various blade leading edge shapes and gaps between the nozzle and cascade. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions are observed.

  • PDF

An experimental study on the expansion loss of a supersonic turbine with the cascade position (익렬 위치에 따른 초음속 터빈의 확산 손실에 대한 실험적 연구)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.387-392
    • /
    • 2006
  • A small supersonic wind tunnel was designed and built to study the flow characteristics of a supersonic impulse turbine cascade. Experiments are performed to find flow characteristics of supersonic turbine with the cascade positions and to find factor of expansion loss. The supersonic cascade with a 2-dimensional supersonic nozzle was tested with the cascade positions. Firstly, the flow was visualized by Z-type Schlieren system. Finally, highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions, flow characteristics of the supersonic turbine were observed.

  • PDF

A New Pressure-Based Finite Element Method Applicable to Viscous Flows at All Speed Ranges (모든 속도영역의 점성유동에 적용 가능한 새로운 압력기반 유한요소법)

  • Shim Eun-Bo;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.169-174
    • /
    • 1995
  • A finite element scheme using the concept of PISO method has been developed to solve the viscous flow problems in all speed range. In this study, new pressure equation is proposed such that both the hyperbolic term related with the density variations and elliptic term reflecting the incompressibility constraint are included. Present method has been applied to incompressible flow in two-dimensional driven cavity(Re=100, 400 and 1,000), and its computed results are compared with other's. Also, Carter plate problem(M=3 and Re=1,000) is computed and the comparison is made with Carter's results. Finally, we simulate a shock-boundary layer interaction problem(M=2 and $Re=2.96{\times}10^5$) to illustrate the shock capturing capability of the present solution algorithm.

  • PDF

Study of the Compressible Nozzle Flow in a Gas Circuit Breaker (가스차단기의 소호노즐 내부에서 발생하는 압축성 유동에 관한 연구)

  • Jung Sung-Jae;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.123-126
    • /
    • 2002
  • Very frequently the compressible flow in an extinction nozzle of gas circuit breaker is simulated under no arc assumption, which can be reasonable for both high and low current breakings. In the present study, computations are performed to investigate the major features of the compressible flows inside the arc extinction nozzle of gas circuit breaker. A fully implicit finite volume scheme is applied to solve the two-dimensional, steady, compressible, Wavier-Stokes equations. The computed results are validated with the previous experimental data available. Several types of turbulence models are explored to reasonably predict the complicated flows inside the arc extinction nozzle. The obtained results show that the shock wave boundary layer interaction inside the nozzle significantly influences the whole performance of the gas breaker.

  • PDF

Accurate Computations for Multi-dimensional flows : Spatial Discretization (다차원 유동의 정확한 수치해석 : 공간 차분법)

  • Kim Kyu Hong;Kim Chongam;Rho Oh-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.5-10
    • /
    • 2003
  • In order to reduce the excessive numerical dissipation, the new spatial discretization scheme is introduced. The present method in this paper has the formula that has an additional procedure of defining transferred properties at a cell-interface, based on AUSMPW+. The newly defined transferred property could eliminate numerical dissipation effectively in non-flow aligned grid system. In addition, the present method guarantees the monotonic characteristic in capturing a discontinuity. Through a stationary or moving contact discontinuity and a stationary or moving shock discontinuity, a vortex discontinuity and shock wave/ boundary layer interaction, it is verified that the accuracy of the present method is improved.

  • PDF

An experimental study on the flow characteristics of a supersonic turbine cascade (초음속 터빈 익렬의 유동특성에 대한 실험적 연구)

  • Cho, Jong-Jae;Jeong, Soo-In;Kim, Kui-Soon;Park, Chang-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1732-1737
    • /
    • 2004
  • In this paper, a small supersonic wind tunnel is designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The flow is visualized by means of a single pass Schlieren system. The supersonic cascade with 3-dimensional supersonic nozzle was tested over a wide range of nozzle installation angle. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions are observed.

  • PDF

An Experimental Study on the Flow Characteristics of a Supersonic Turbine Cascde as Nozzle Installation Angle (노즐 설치각에 따른 초음속 터빈 익렬의 유동 특성에 대한 실험적 연구)

  • Cho Jong-Jae;Jeong Soon-In;Kim Kui-Soon;Park Chang-Kyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper, a small supersonic wind tunnel is designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The flow is visualized by means of a sin91e pass Schlieren system. The supersonic cascade with 3-dimensional supersonic nozzle was tested over a wide range of nozzle installation angle. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions are observed.