• 제목/요약/키워드: Shock Simulation

검색결과 471건 처리시간 0.027초

Mechanisms of Oblique Shock-Induced Combustion Instability

  • Choi, Jeong-Yeol;Jeung, In-Seuck
    • 한국연소학회지
    • /
    • 제7권1호
    • /
    • pp.23-30
    • /
    • 2002
  • Instability of oblique detonation waves (ODW) at off-attaching condition was investigated through a series of numerical simulations. Two-dimensional wedge of finite length was considered in $H_2/O_2/N_2$ mixtures at superdetonative condition. Numerical simulation was carried out with a compressible fluid dynamics code and a detailed hydrogen-oxygen combustion mechanism. Present result reveals that there is a chemical kinetic limit of the ODW detachment, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. Result also presents that ODW still attaches at a wedge as an oblique shock-induced flame showing periodically unstable motion, if the Rankine-Hugoniot limit of detachment is satisfied but the chemical kinetic limit is not. Mechanism of the periodic instability is considered as interactions of shock and reaction waves coupled with chemical kinetic effects. From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of the Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

Numerical Simulation of Shock Propatation by the Finite Difference Lattice Boltzmann Method

  • Kang, Ho-Keun;Tsutahara, Michihisa;Kim, Jeong-Hwan;Lee, Young-Ho
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.468-474
    • /
    • 2001
  • The shock process represents an abrupt change in fluid properties, in which finite variations in pressure, temperature, and density occur over a shock thickness which is comparable to the mean tree path of the gas molecules involved. The fluid phenomenon is simulated by using finite difference lattice Boltzmann method (FDLBM). In this research, the new model is proposed using the lattice BGK compressible fluid model in FDLBM for the purpose of shortening in calculation time and stabilizing in simulation operation. The numerical results agree also with the theoretical predictions.

  • PDF

Advances in ship survivability against underwater explosions

  • Shin, Young S.
    • Ocean Systems Engineering
    • /
    • 제1권2호
    • /
    • pp.111-119
    • /
    • 2011
  • Mines, torpedoes and improvised explosive devices (IED) pose a serious threat to the survivability of naval combatants. Inasmuch, a major goal in the design of modern combatant ships has been to eliminate or at least reduce the devastating damage caused by underwater explosion events. Even though there has been extensive research performed on the various underwater explosion phenomena and their associated effects, effective shock testing and shock proofing strategies for naval ship systems have proven to be illusive. Through the use of modeling and simulation (M&S), live fire test and evaluation (LFT&E) and laboratory testing, general guidelines for the shock hardening of shipboard equipment and systems have been developed. In this paper, current aspect of ship survivability has been addressed and future direction is discussed.

Probabilistic Structural Integrity Assessment of a Reactor Vessel Under Pressurized Thermal Shock

  • Kim, Ji-Ho;Kim, Yong-Wan;Kim, Tae-Wan;Hyung-Huh;Kim, Jong-In
    • Nuclear Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.99-107
    • /
    • 2000
  • A probabilistic integrity analysis method is presented for a reactor vessel under pressurized thermal shock(PTS) based on Monte Carlo simulation. This method can be applied to the structural integrity assessment of a reactor vessel subjected to pressurized thermal shock where the coolant temperature transient cannot be expressed explicitly as a time function. An axially or circumferentially oriented infinite length surface crack is assumed to be in the beltline weld region of the rector vessel's inside surface. The random variables are the initial crack depth, neutron fluence on the vessel's inside surface, the copper and nickel content of the vessel materials, R $T_{NDT}$ , $K_{IC}$ , and K/aub la/. The reliability of a sample reactor vessel under PTS is assessed quantitatively and the influence of the amount of neutron fluence is also examined by applying the present method.sent method.

  • PDF

항공용 마운트의 개발과 시뮬레이션 (The Development & Simulation for the Isolation Mount installed in Aircraft)

  • 전희호;박재민;이승준
    • 한국소음진동공학회논문집
    • /
    • 제20권3호
    • /
    • pp.223-228
    • /
    • 2010
  • The mount which is used in military airplane should be operated in various situations such as vibration, shock and temperature. The recent mounts cost a lot and take much time to replace when they broke down. That's why new mount was produced in domestic by reverse engineering and the product has been proved its performance through environment test regarding vibration and shock. According to simulation of dynamic characteristics on vibration and shock, the result turns out to be similar to the result of the environmental test with an error of within 10 percent. As a result this research, a draft of the military aviation mount designing program is arranged.

초소형 광자기 드라이브용 HGA의 동적 충격 시뮬레이션 (Dynamic Shock Simulation of Head-gimbal Assembly in Micro MO Drives)

  • 오우석;홍어진;박노철;양현석;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.189-194
    • /
    • 2004
  • As a disk drive becomes widely used in portable environments, one of the important requirements is durability under severe environmental condition, especially, resistance to mechanical shock. An important challenge in the disk recording is to improve disk drive robustness in shock environments. If the system comes In contact with outer shock disturbance, the system gets critical damage in head-gimbal assembly or disk. This paper describes analysis of a HGA(head-gimbal assembly) in micro MO drives to shock loading during both non-operating state and operating state. A finite element model which consists of the disk, suspension, slider and air bearing was used to find structural response of micro MO drives. In the operational case. the air bearing is approximated with four linear elastic springs. The commercially available finite element solver, ANSYS/LS-DYNA, is used to simulate the shock response of the HGA in micro MO drives. In this paper, the mechanical robustness of the suspension is simuiated considering the shock responses of the HGA.

  • PDF

공기압 실린더의 쿠션특성에 관한 모델링 및 컴퓨터 시뮬레이션 (Computer Simulation and Modeling of Cushioning Pneumatic Cylinder)

  • 이상천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권6호
    • /
    • pp.794-805
    • /
    • 1999
  • Pneumatic cushioning cylinders are commonly employed for vibration and shock control. A mathematical simulation model of a double acting pneumatic cushioning cylinder designed to absorb shock loads is presented which is based on the following assumptions; ideal equation of state isentropic flow through a port conservation of mass polytropic thermodynamics single degree of freedom piston dynamics and energy equivalent linear damping. These differential equation can be solved through numerical integration using the fourth order Runge-Kutta method. An experimental study was conducted to validate the results obtained by the numerical integra-tion technique. Simulated results show good agreement with experimental data. The computer simulation model presented here has been extremely useful not only in understanding the has been extremely useful not only in understanding the basic cushioning but also in evaluating different designs.

  • PDF

상전도 흡인식 자기부상열차의 주행 안정성 해석 (Stability Analysis of a Maglev Vehicle Utilizing Electromagnetic Suspension System)

  • 한형석;김숙희;임봉혁;허영철
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.118-126
    • /
    • 2008
  • The levitation stability of a Maglev vehicle utilizing electromagnetic suspension is primarily influenced by the deformation, roughness, and vibration of the guideway. Optimum design for both the vehicle and the guideway is desirable in order to reduce guideway construction cost, while meeting requirements for stability and ride quality. This paper presents an analysis of the levitation stability of the UTM-01, an urban Maglev vehicle, using a numerical simulation. The ODYN/Maglev, a dynamics analysis program, is used to simulate dynamics to evaluate the stability. A running test of the UTM-01 is also carried out to verify the results of the simulation. Using the simulation results, the levitation stability of the UTM-01 can be numerically analyzed at a variety of vehicle speeds.

폭발하중으로 부터 지반의 완충적 동과에 대한 수치해석적 연구 (Numerical Analysis of Ground Shock Attenuation from Explosive Loading)

  • 박종관
    • 한국지반공학회지:지반
    • /
    • 제4권4호
    • /
    • pp.19-28
    • /
    • 1988
  • An underground explosion crests shock waves, which propagate to a buried structure through the이 ground. Due to the explosion, very high stresses and large deformation occur in the ground so that the shock waves decay gradually. In this study the numerical simulation of the ground shock attenuation has teen performed. One dimensional wave equation is presented and the finite difference method is applies. A Cap model is adopted to describe the stress-strain behavior of the ground. The results are expressed by the attenuation of the peak stress and the particle vrelocity by the time and the distance.

  • PDF

충격파 내에서 형성되는 아르곤 기체의 운동 에너지 분포와 속도 분포에 대한 비평형 분자동역학 모의실험 연구 (Nonequilibrium Molecular Dynamics Simulation Study of Kinetic Energy and Velocity Distribution Profiles of Argon Gases in Shock Waves)

  • 황현석;이지혜;권찬호;김홍래;박민규;김성식
    • 한국군사과학기술학회지
    • /
    • 제14권1호
    • /
    • pp.147-153
    • /
    • 2011
  • A series of nonequilibrium molecular dynamics(NEMD) simulations are performed to investigate the kinetic energy and velocity distributions of molecules in shock waves. In the simulations, argon molecules are used as a medium gas through which shock waves are propagating. The kinetic energy distribution profiles reveals that as a strong shock wave whose Mach number is 27.1 is applied, 39.6% of argon molecules inside the shock wave have larger kinetic energy than molecular ionization energy. This indicates that an application of a strong shock wave to argon gas can give rise to an intense light. The velocity distribution profiles in z direction along which shock waves propagate clearly represent two Maxwell-Boltzmann distributions of molecular velocities in two equilibrium regions and one bimodal velocity distribution profile that is attributed to a nonequilibrium region. The peak appearing in the directional temperature in z direction is discussed on a basis of the bimodal velocity distribution in the nonequilibrium region.