• Title/Summary/Keyword: Shock Sensor

Search Result 82, Processing Time 0.036 seconds

A Study on Fracture Behavior of Scaled Model for Ceramic Dome Port Cover (세라믹 돔포트 커버 상사모델의 파괴거동에 관한 연구)

  • Hwang, Kwon-Tae;Kim, Jae-Hoon;Lee, Young-Shin;Park, Jong-Ho;Song, Kee-Hyuck;Yoon, Soo-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.55-62
    • /
    • 2009
  • Fracture behavior of ceramic dome port cover on air breathing engine using liquid and solid fuel propulsion system was carried out in this study. Fracture characteristics was tested and estimated using scaled model of ceramic dome port cover by Shock tube. Fracture behavior was obtained by the fracture pressure from pressure sensor and observed the scattering phenomena of fracture specimen using high speed camera. Results obtained from this study can be used in the base data of dome port cover design for an air breathing engine.

Piezoresistive-Structural Coupled-Field Analysis and Optimal Design for a High Impact Microaccelerometer (고충격 미소가속도계의 압저항-구조 연성해석 및 최적설계)

  • Han, Jeong-Sam;Kwon, Soon-Jae;Ko, Jong-Soo;Han, Ki-Ho;Park, Hyo-Hwan;Lee, Jang-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.132-138
    • /
    • 2011
  • A micromachined silicon accelerometer capable of surviving and detecting very high accelerations(up to 200,000 times the gravitational acceleration) is necessary for a high impact accelerometer for earth-penetration weapons applications. We adopted as a reference model a piezoresistive type silicon micromachined high-shock accelerometer with a bonded hinge structure and performed structural analyses such as stress, modal, and transient dynamic responses and sensor sensitivity simulation for the selected device using piezoresistive-structural coupled-field analysis. In addition, structural optimization was introduced to improve the performances of the accelerometer against the initial design of the reference model. The design objective here was to maximize the sensor sensitivity subject to a set of design constraints on the impact endurance of the structure, dynamic characteristics, the fundamental frequency and the transverse sensitivities by changing the dimensions of the width, sensing beams, and hinges which have significant effects on the performances. Through the optimization, we could increase the sensor sensitivity by more than 70% from the initial value of $0.267{\mu}V/G$ satisfying all the imposed design constraints. The suggested simulation and optimization have been proved very successful to design high impact microaccelerometers and therefore can be easily applied to develop and improve other piezoresistive type sensors and actuators.

Study on the estimation of the cylinder displacement of an underwater robot for harbor construction using a pressure sensor (압력센서를 이용한 수중항만공사 로봇의 실린더 변위 추정에 관한 연구)

  • Kim, Chi-Hyo;Kim, Tae-Sung;Lee, Min-Ki
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.865-871
    • /
    • 2012
  • This paper presents an observer to estimate the displacement of hydraulic cylinders of an underwater robot for harbour construction using a pressure sensor. In harbour constructing, we place heavy armour stones weighing over 2~3 tons on the surface of the bank to protect it from storming wave. This work typically done by a diver is difficult and dangerous so that we have developed Stone Diver which is the underwater robot for harbour construction. The robot needs a displacement sensors to control the position of hydraulic cylinders. The position sensors mounted outside the cylinders cause poor durability in construction site where shock and dust usually occur. However, the pressure sensor mounted inside a waterproof box improves the durability. Based on the dynamic parameters and the pressures in the cylinder, the observer estimates the cylinder's position. This paper presents the positional accuracy of the pressure based observer and the performance of the underwater robot to assemble the armour stones.

Positioning-error Analysis of Vibration Sensors for Prognostics and Health Management in Rotating System (갠트리 크레인 호이스트의 건전성 평가를 위한 진동 모사시스템 구축과 데이터 통계 분석)

  • Jang, Jaewon;Han, Zhiqiang;Zhang, Haiyang;Oh, Daekyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.346-353
    • /
    • 2022
  • Recently, studies on the integrity of rotating machines, such as gantry cranes, which are used in the shipbuilding industry, have been actively conducted. Gantry cranes are driven at relatively low revolutions per minute (RPM), are frequently operated and stopped, and are impacted by external environmental factors, such as shock and noise in the measurement data. The purpose of this study was to construct a replica of a gantry crane hoist used in indoor shipbuilding and analyze the acquired data for errors caused by the shift in operating conditions (RPM) and the change in the position of the data acquisition sensor. Consequently, we observed that the error caused by differences in sensor positions did not occur significantly under low operating conditions but occurred significantly under relatively high operating conditions. Thus, we determined that both the operating condition and position of the acquisition sensor affected the data acquired by the rotary machine.

Reliability Verification of Battery Disconnecting Unit (BDU 신뢰성 검증)

  • Yoon, Hye-Lim;Ryu, Haeng-Soo;Ji-Hong;Hong-Tae, Park
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.866-867
    • /
    • 2011
  • As part of the green growth, The Green Car has attracted wide attention. Types of the Green Car are Electric Vehicle, Plug-in Hybrid Electric Vehicle, Hybrid Electric Vehicle, Fuel Cell Vehicle and Clean Diesel Vehicle. Of these, The electric vehicle is equipped with the BDU(Battery Disconnecting Unit). BDU is supplying stable battery power and blocking it to protect electrical system of the electric vehicle. The BDU consists of electric components such as current sensor, fuse and pre-charge resistor. These must pass Voltage withstand test, Salt mist test, Thermal shock test, Vibration test and Short-circuit test commonly to verify reliability of the electric components. In addition, The current sensor should be verified whether normal operation. The breaking capacity of fuse should be verified. The durability of pre-charge resistor should be verified by supplying battery power and blocking it repeatedly. The reliability of BDU as well as the electric vehicle is secured by verifying the reliability of electric components. In addition, It will contribute to the acceleration and promotion of Green Car Technology.

  • PDF

Study of Failure Examples of Automotive Electronic Control Suspension System Including Cases with Wiring Disconnection and Air Leakage (배선 단선과 에어 누설에 관련된 자동차 ECS 시스템의 고장사례 고찰)

  • Lee, Il Kwon;Park, Jong Geon;Shin, Myung Shin;Jang, Joo Sup
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.180-185
    • /
    • 2013
  • The purpose of this study was to analyze the tribological characteristics of the Electronic control suspension System in a car. In the first example, the cilp used to attach the front electronic control suspension(ECS) system's control actuator was fastened very tightly. Thus, the wire was cut because of continual rotation of the shock-up shover piston rod used to adjust the height of the car. This verified the disconnection phenomenon where wire damaged makes it impossible for the ECS system to send signal to the actuator. The second example, involved a minute hole that allowed gas to leak from the ECS system. As a result, the height of the car verified the down phenomenon. In the third example, the resistance of a wire measured at $0.21{\Omega}$, when the G sensor was disconnected from the system. This verified the system shutdown and lighting of the ECS warning lamp because of body interference caused by a slight pressure on the battery cover. Therefore, quality control is always necessary to ensure safety and durability of a car.

Design of Electronic Drum Using Computer Communication Based on Arduino (아두이노에 기반한 컴퓨터 통신을 이용한 전자드럼 설계)

  • Kim, Seungmin;Yang, Jisoo;Lee, Seungjae;Kim, Jung Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.489-491
    • /
    • 2013
  • In this paper, Electronic Drum based on Arduino and Processing language to communicate with a computer is implemented. First, we made a drum pad by using piezoelectric sensors. The drum pads prevent damage to the sensor and new mechanism was fabricated to mitigate the impact structure. Arduino connected to the pad, the sensor detects a signal when the shock sends it to Arduino. The received signal of Arduino sends a signal to the computer, and the signal received is stored in the computer to output sound of the drum. Through this structure, the micro-controller, the computer and communications technology can be combined and applicable to a many system.

  • PDF

A Study On Cause Analysis and Improvement About Malfunction of Proximity Sensor Exposed High Temperature (근접센서의 고온 고장발생에 관한 원인분석 및 개선 연구)

  • Park, Jin-Saeng
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • Because internal space of combat vehicle reachs about $80^{\circ}C$ at high temperature period, Proximity Sensor exposed high temperature and humidity, which has function to sense the distance and transfer signal for control unit, have enlarged sensing distance and finally locked on. Malfunction of sensing itself occur frequently, therefore we carried out cause analysis and improvement. We accomplish improvement activity secondly. Through-out many trial and error, we find out that malfunction of sensor occur at high temperature circumstance. To improve, the another Emitter Coil is added to increase voltage difference and improve sensing accuracy about 5~10 times. And we accomplish design improvement to dull temperature and humity change after increasing molding surface to add vibration and shock resistance. We prove that the improved product do not fail after enduring 136hr at $85^{\circ}C$ temperature and 85% relative humidity circumstance chamber.

Development of axial tomography technique for the study of steam explosion (증기폭발 적용 축방향 토모그라피 기술 개발)

  • Seo, Si-Won;Ha, Kwang-Soon;Hong, Seong-Wan;Song, Jin-Ho;Lee, Jae-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3027-3032
    • /
    • 2007
  • To understand the complex phenomena performed in steam explosion, the fast and global measurement of the steam distribution is imperative for this extremely rapid transient stimulation of the bubble breakup and coalescence due to turbulent eddies and shock waves. TROI, the experimental facility requests more robust sensor system to meet this requirement. In Europe, researchers are prefer a X-ray method but this method is very expensive and has limited measurement range. There is an alternative technology such as ECT. Because of TROI's geometry, however, we need axial tomography method. This paper reviews image reconstruction algorethms for axial tomography, including Tikhonov regularization and iterative Tikhonov regularization. Axial tomography method is examined by simulation and experiment for typical permittivity distributions. Future works in axial tomography technology is discussed.

  • PDF

Study on the Temperature Drift Adaptive Compensation Algorithm of a Magneto-Electric Encoder Based on a Simple Neuron

  • Wang, Lei;Hao, Shuang-Hui;Song, Bao-Yu;Hao, Ming-Hui
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1254-1262
    • /
    • 2014
  • Magneto-electric encoders have been widely used in industry and military applications because of their good shock resistance, small volume, and convenient data processing. However, the characteristics of a magneto-electric encoder's signal generator and hall sensor changes minimally with temperature variation. These changes cause an angle drift. The main purpose of this study is to construct the compensation system of a neural network and constantly update weight coefficients of temperature correction by finite iteration calculation so that the angle value modified can approach the angle value at the target temperature. This approach is used in adaptive correction of the angle value.