• Title/Summary/Keyword: Shock Isolator Design

Search Result 17, Processing Time 0.026 seconds

Topology Optimization of Passive Shock Isolator with Application to Ballistic Shock (발사충격을 고려한 수동충격저감기의 위상최적설계)

  • Wang, Se-Myung;Lim, Kook-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.406-410
    • /
    • 2006
  • Topology optimization of improved passive shock isolator by controlling its force-deflection relation is proposed. And the final design which is optimized using topology optimization is obtained using shape optimization. The proposed methods are applied to a numerical example using two dimensional-axisymmetric condition. And the performance of finally optimized design is verified through transient analysis using LS-DYNA. The ballistic shock isolator model is developed as a result of topology optimization. The optimized design has more improved shock absorbing capability comparing to the linear shock isolator by about 20%.

  • PDF

Verification of Launch Vibration and Shock Isolation Performance for Spaceborne Compressor Vibration Isolator with SMA Mesh Washer (형상기억합금 메쉬 와셔를 이용한 우주용 냉각기 진동절연기의 발사 진동 및 충격 저감 성능검증)

  • Lee, Myeong-Jae;Han, Je-Heon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.517-524
    • /
    • 2014
  • Micro-vibration induced by on-board equipments such as fly-wheel and cryogenic cooler with mechanical moving parts affects the image quality of high-resolution observation satellite. Micro-vibration isolation system has been widely used for enhancing the pointing performance of observation satellites. In general, the micro-vibration isolation system requires a launch locking mechanism additionally to guarantee the structural safety of mission payloads supported by the isolation system with low stiffness under launch environment. In this study, we propose a passive launch and on-orbit vibration isolation system using shape memory alloy mesh washers for the micro-vibration isolation of spaceborne compressor, which does not require the additional launch locking mechanism. The basic characteristics of the isolator were measured in static and free vibration tests of the isolator, and a simple equivalent model of the isolator was proposed. The effectiveness of the isolator design in a launch environment was demonstrated through sine vibration, random vibration and shock tests.

Shock Analysis of Gimbal Structure System Including Rubber Vibration Isolator in a Observation Reconnaissance Aircraft (방진 고무를 포함한 항공 감시 정찰용 짐발 구조 시스템의 충격 해석)

  • Lee, Sang Eun;Lee, Tae Won;Kang, Yong Goo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • A camera module that gathers visual information via aerial observation reconnaissance is equipped inside a gimbal structure. This gimbal structure system must reduce dynamic responses in order to obtain clear images under all circumstances. Among many design specifications for this system, there is MIL-STD-810G as a shock standard. This specification indicates a limitation of the acceleration of the camera module under a base shock excitation on the gimbal structure. The satisfaction of this condition can usually be proved by experiment, because it includes bearings and dynamic isolators made of rubber. Numerical analysis must be proposed for design improvement of the gimbal structure. To achieve this goal, transient response analysis for the base shock excitation was performed using the finite element method. Experimental results were compared with numerical solutions and it is shown that the present method is useful.

Study of the Vibration and Shock Isolation for HEV Battery Pack (특수임무 차량 배터리 팩 진동/충격 저감 설계에 대한 연구)

  • Kim, Man-Dal;Jang, Duk-Jin;Lee, Sung-Jun;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.813-820
    • /
    • 2016
  • Hybrid Electric Vehicles (HEVs) are developed to be operated with two kinds of power source (Diesel Engine and Electric Motor with Rechargeable High Voltage Battery Pack). HEVs for military vehicle require high reliability to provide stable powers under serious environment such as vibration and shock. To ensure normal operation of battery pack under serious environment such as vibration and shock, the high voltage battery pack needs to have appropriate dynamic characteristics. This paper presents a design procedure for high voltage battery pack with such characteristics. An isolator design is proposed to reduce vibration and shock. Associated random vibration and shock response of the high voltage battery pack are simulated under conditions suggested by MIL specifications. Its dynamic characteristics and vibration and shock responses are validated with experiments.

Isolation Technique of Shock Transfer Path of the Microdrive for Shock Resistance Improvement (마이크로 드라이브의 충격 저감을 위한 충격 전달 경로 절연 기법)

  • Kim, Do-Gyoon;Lee, Jun-Hwa;Kim, Kwang-Joon;Byun, Yong-Kyu;Han, Woo-Sup;Hong, Min-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.717-722
    • /
    • 2003
  • To improve the shock resistance of the microdrive under non-operating conditions, an isolator was attached to the contacting part of the microdrive. Through FE analysis, design parameters for satisfying the allowable acceleration level of the spindle motor bearing part were presented, which is a most possible critical part of the microdrive.

  • PDF

Developing Microcellular Foamed Vibration Isolator for DVD by Axiomatic Approach (공리적 접근을 이용한 DVD용 초미세 발포 방진재 개발)

  • Jeong, Pil-Jung;Cha, Seong-Un
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.101-106
    • /
    • 2000
  • As the rotational speed of optical disk drive is increasing nowadays, the reliability to vibration and shock becomes more important. For this, various of rubber vibration isolators are being developed by varying the shape and hardness. But it is difficult for the hardness of common used rubber to be lowered below Duro 30 degrees, and because of the shape complexity of rubber vibration isolator there are difficulties of analysis. Microcellular foamed vibration isolator has various cell densities and cell sizes, so it can vary the stiffness and damping coefficient. In addition, its hardness can be lowered below Duro 30 degrees. Axiomatic Approach is very useful design method for designing new product or new process. Axiomatic Approach's character is scientific and analytical method. In this paper, developing process of microcellular foamed vibration isolator for DVD is presented with Axiomatic Approach.

  • PDF

Dynamic Analysis of Gimbal Structure System Including Nonlinear Elastic Rubber Vibration Isolator with Shock Acceleration (비선형 탄성 방진 고무부에 충격 가속도를 받는 짐발 구조 시스템의 동적 해석)

  • Lee, Sang Eun;Lee, Tae Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.415-422
    • /
    • 2016
  • When shock acceleration is applied to a mechanical system, it may cause malfunctioning and damage to the system. Hence, to prevent these problems when developing a gimbal structure system for observation reconnaissance, the MIL-STD-810G shock standard must be satisfied as a design specification. Rubber vibration isolators are generally assembled on the base of the system in order to reduce the shock transferred from the aircraft. It is difficult to analyze the transient behavior of the system accurately, because rubber has a nonlinear load-deformation curve. To treat the nonlinear characteristic of the rubber, bilinear approximation was introduced. Using this assumption, transient responses of the system under base shock acceleration were calculated by the finite element method. In addition, experiments with a true prototype were performed using the same conditions as the analytical model. Compared with experimental data, the proposed numerical method is useful for the transient analysis of gimbal structure systems, including rubber vibration isolators with nonlinear stiffness and damping.

A Analysis Study of Dual-Mode Scramjet Engine Flowpath (이중모드 스크램제트 엔진 Flowpath 해석 연구)

  • Byun, Jong-Ryul;Ahn, Jungki;Ananthkrishnan, N.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.277-284
    • /
    • 2017
  • This study is the results of the analytical research for a dual-model scramjet engine flowpath which is included inlet, isolator, combustor, and nozzle. To design a dual-mode scramjet engine and to investigate its performance, the performance analysis models and tools are required to develope for aerodynamic, thermodynamic characteristics, propulsion, and total system. Therefore, analysis models for air inlet, isolator, supersonic combustor, and nozzle of a dual-mode scramjet engine were accomplished, the performance characteristics of a dual-mode scramjet engine is investigated with using the developed analysis tools.

  • PDF