• Title/Summary/Keyword: Shipyard simulation system

Search Result 39, Processing Time 0.023 seconds

A Study on Analysis Process of Customer Requirements and Functional Requirements for a Ship Production Simulations (조선해양 생산 시뮬레이션 요구 및 기능 분석 프로세스 연구)

  • Hwang, Ho-Jin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.449-457
    • /
    • 2011
  • The productivity improvement is indispensible to shipbuilding industry for maintaining the world's No. 1. Simulation based production recently has been an issue as prat of efforts to high efficiency production and Korean shipyards requests simulation system tools specialized in a shipbuilding industry. IT convergence project between conventional shipbuilding industry and IT simulation technology has been carried out and integrated simulation framework was proposed as a way to overcome sporadic developments. The framework would provide reusability of kernels and modules and also ensure for expansibilities to other production simulations. The fact that production simulation system should reflect shipyard requirement would be most important. We suggest an analysis process of customer requirements and functional requirements for production simulations. It is partially based on concepts of software engineering and axiomatic design. The process is applied to a design of configuration for simulation framework.

Framework design of simulation-based ship production execution system(SPEXS) in a shipyard (시뮬레이션 기반 조선생산실행시스템 프레임워크 설계)

  • Lee, Kwang-Kook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1854-1864
    • /
    • 2011
  • Production planning is one of the most important activities in shipbuilding enterprises. Shop-floor supervisors and planners still do not have enough information to effectively analyze shop operations because of the difference between production planning and shop-floor scheduling. In this paper, process analysis was conducted between production planning and shop-floor control to clarify the difference, and the necessity of the manufacturing execution system(MES) was derived in a shipyard. Therefore, the simulation-based ship production execution system(SPEXS) was defined by analyzing characteristics of MES. The architectural functions of the system were deducted from the process of requirement analysis. The SPEXS' framework was constructed on the basis of the architectural functions. This framework will provide more reliable production schedules and allow engineers to plan and control shop operations in real-time.

Construction of a Verified Virtual NC Simulator for the Cutting Machines at Shipyard Using the Digital Manufacturing Technology (디지털 매뉴팩쳐링 기법을 이용한 절단기기의 검증된 가상 NC 시뮬레이터 구축)

  • Jung, Ho-Rim;Yim, Hyun-June;Lee, Jang-Hyun;Choi, Yang-Ryul;Kim, Ho-Gu;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.1 s.139
    • /
    • pp.64-72
    • /
    • 2005
  • Digital manufacturing is a technology to simulate the real manufacturing process using the virtual model representing the physical schema and the behavior of the real manufacturing system including resources, processes and product information. Therefore, it can optimize the manufacturing system or prevent the bottleneck processes through the simulation before the manufacturing plan is executed. This study presents a method to apply the digital manufacturing technology for the steel cutting process in shipyard. The system modeling of cutting shop is carried out using the IDEF and UML which is a visual modeling language to document the artifacts of a complex system. Also, virtual NC simulators of the cutting machines are constructed to emulate the real operation of cutting machines and NC codes. The simulators are able to verify the cutting shape and estimate the precise cycle time of the planned NC codes. The validity of the virtual model is checked by comparing the real cutting time and shape with the simulated results. It is expected that the virtual NC simulators can be used for accurate estimation of the cutting time and shape in advance of real cutting work.

Numerical Analysis on the Ventilation System Improvement in Air Shot Blast Room (Air Shot Blast 작업실 내부 환기 시스템 개선에 관한 수치해석)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.861-868
    • /
    • 2022
  • The purpose of this study is to design an effective atmospheric environment system through the design of the dust collection in the air shot room being operated in a domestic shipyard. The ventilation system in the current air shot room mostly uses a dust collecting filter to filter internal particles and releases them in the atmosphere. A conventional design was made too much. In order to prevent an error and draw an optimal design, Computational fluid dynamics (CFD) tried to be applied only to air shot room. In the advanced design technique, computer simulation was conducted to secure basic design data. In order to find the basic design of the ventilation system and the flow field in the air shot room at propeller mold workplace of a shipyard, the CFD was conducted. In the case of Model-1 as a conventional workplace, where air flows in the inlet due to the subatmospheric pressure generated by inhalation of an air blower and flows out to the outlet, a discharge flow rate was somewhat low, and there was the holdup zone in the room. In the case of Model-2 as an improved model, the ventilation system was improved in the Push-Pull type, and the holdup of the internal flow field was improved.

DS/Block - a CAD-based software system for simulation of lifting and turnover of ship block (CAD를 이용한 선박 블록의 이동 및 반전 시뮬레이터 DS/Block의 개발)

  • Lee, Soo-Bum;Shin, Sang-Bum;Kim, Jung-Soo;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.164-169
    • /
    • 2001
  • A comprehensive extension of functions and efficiency of the software system, DS/Block, developed earlier for the purpose of simulation of the motion of a ship block during lifting and turnover operation. A viewpoint change used in 3D-CAD is utilized and saves the time for displays of a series of configurations for the motion. The Euler parameters are adopted to convert 3 rotational degrees of freedom about global coordinate system to those about local coordinate system defined in Pro/ENGINEER. DS/Block provides FEM input data for stress and strain analyses. Several functions are incorporated for user-friendliness. DS/Block is to be tested and installed in a shipyard.

  • PDF

An Establishment Case of Welding Robot OLP System Using 3D Design Model Information (설계모델정보를 이용한 용접로봇 OLP 시스템 구축 사례)

  • Oh, Sung-Kwan;Chai, Beam-Ho;Eun, Sean-Ho;Sung, Chang-Jae
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.43-47
    • /
    • 2007
  • In this paper, we will introduce how we utilize 3D design model information at factory automation field with welding robot OLP system which is in using at out shipyard. At this area, so far, most of design information is used in NC data generation for steel cutting, but we can utilize 3D model information at more wide and complex area likes robot welding. Moreover, OpenGL which is a graphic library can be possible to verify robot NC data is correct or not through 3D simulation even if some one is not a expert at robot handling.

  • PDF

Modeling and Simulation of Ship Panel-block Assembly Line Using Petri Nets (Petri Nets을 이용한 조선소 패널 블록 조립 라인의 모델링과 시뮬레이션)

  • Han, Sang-Dong;Ryu, Cheol-Ho;Shin, Jong-Gye;Lee, Jong-Kun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.1
    • /
    • pp.36-44
    • /
    • 2008
  • This paper proposes a modeling and simulation process of a panel production line (PPL) in a shipyard. The panel production line is an assembly process to produce a main panel of a flat block and a curved block. In this paper, its activity analysis is carried out using expression of IDEF0, and its process is qualitatively and quantitatively analyzed and modeled by Petri Nets. A commercial discrete event simulation tool, $QUEST^{TM}$, is used for virtual PPL and simulation. The modeling results by Petri Net are mapped to elements of the simulation tool. Finally, an integrated simulation environment of PPL is implemented in order to efficiently utilize the virtual PPL model. With the help of IDEF0 and Petri Nets, we could systematically analyze and describe the PPL process that are characterized as being concurrent, asynchronous, distributed, parallel, nondeterministic, and/or stochastic. Also, the dynamic and concurrent activities of a PPL system were able to be simulated. A timing concept can be included into the Petri nets model to evaluate performance and dependability issues of the system.

Development of simulation-based ship production execution system(SPEXS) for a panel block assembly shop (판넬블록 생산관리를 위한 시뮬레이션 기반 조선생산실행시스템 개발)

  • Lee, Kwang-Kook;Kim, Young-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2313-2320
    • /
    • 2011
  • The management of a panel block shop in a shipyard is a complex process that entails the largest amount of work and in which many decisions are involved. Shipbuilders have considered the process as a bottleneck since every panel for every ship and offshore hull structure must be processed through the shop. In order to maximize process productivity, simulation-based ship production execution system(SPEXS) is proposed for panel block operations utilising discrete-event simulation and simulated annealing. An application of panel block assembly shop, called SPEX-Panel supports production planners by general dispatching rules and metaheuristics to make better scheduling decisions on the shop floor. In addition, the system will help increase productivity in the yard with continuous improvement.

A Study on the Development and Application of a Small Shipyard Customized Production Process Planning and Management System (소형조선소 맞춤형 생산공정 계획관리 시스템 개발 및 적용에 관한 연구)

  • Kim, Young-Hun;Hong, Min-Jong;Baek, Seung-Ju;Lee, Won-Seok;Jo, Yong-Hwa;Lee, Dae-Hyung;Lee, Hoon-Sick;Na, Sung-Tae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.79-86
    • /
    • 2022
  • In general, since the types and types of ships, so complex and various variables are included to measure the amount of construction work. In addition, it is mot easy to predict the schedule or the number of working hours before ship construction, and it is also mostly inaccurate. As a result, the master plan is manually drawn up by the expert's experience, but there are limitations due to various factors. Medium and large shipyards are operating APS(Advanced Planning and Scheduling) system that reflects industrial characteristics to improve productivity in the planning stage, and utilize information from systems such as ERP(Enterprise Resource Planning) system and MES (Manufacturing Execution System). On the other hand, small shipyards rely mostly on manual work such as Excel work based on the experience of the workers. Therefore, this study intends to develop a master plan management system that can efficiently manage the production process from the business planning stage in consideration of the characteristics of small shipyards.

Construction of Scheduling Support System for Panel Lines by Digital Manufacturing Simulation (디지털 생산 시뮬레이션 기반의 판넬라인 일정계획지원 시스템 구축)

  • Lee, Kwang-Kook;Choi, Dong-Hwan;Han, Sang-Dong;Park, Ju-Young;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.228-235
    • /
    • 2006
  • Nowadays, digital manufacturing has been known to be very effective method in manufacturing fields. It is aimed to estimate process time, to improve operation efficiency, and to prevent bottleneck processes in advance of real manufacturing. This paper addresses a scheduling support system for panel hues in a shipyard through digital manufacturing simulation. The proposed system supports operators to make better decisions on the shop-floor scheduling in panel lines. It ,would provide a complete schedule that is at least as good as any schedule currently obtained. Furthermore, it can evaluate the operator's schedule by simulating it with 3-dimensional models before the work orders and schedules are released.