• Title/Summary/Keyword: Ship-to-ship (STS)

Search Result 20, Processing Time 0.024 seconds

Identification of Impact Factors in Ship-to-Ship Mooring Through Sensitivity Analysis

  • Lee, Sang-Won;Lee, Hyeong-Tak;Kim, Dae-Gun;Cho, Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.43 no.5
    • /
    • pp.310-319
    • /
    • 2019
  • With the recent increase in the volume of liquid cargo transportation, there is a need for STS( Ship To Ship) globally. In the case of the STS mooring, the safety assessment should be conducted according to other criteria because mooring is different from the general mooring at the quay, but there is no separate standard in Korea. Thus in this study, STS mooring simulation and sensitivity analysis using OPTIMOOR program, the numerical analysis program, was conducted to identify the characteristics of the STS mooring. The target sea modeled the Yeosu port anchorage in Korea and the target ship was selected as the case of VLCC (Very Large Crude Oil Carrier)-VLCC. Through the numerical simulation and sensitivity analysis, the characteristics of STS mooring were identified. Also based on these results, we focused on establishing the standard for STS mooring safety assessment. Numerical simulation results show that the STS mooring safety can be changed according to a ship's cargo loading condition, pre-tension of mooring line, sea depth, encounter angle with the weather, and the weather condition. Additionally, the risk matrix is prepared to establish the safe external force range in the corresponding sea area. This result can be used to understand the mooring characteristics of STS and contribute to the revision of mooring safety assessment criteria.

A Study on Offshore Ship-to-Ship Mooring Characteristics through Numerical Analysis (수치해석을 통한 해상 Ship-to-Ship 계류 특성에 관한 연구)

  • Lee, Sang-Won;Lee, Yun-Sok;Cho, Ik-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.135-137
    • /
    • 2019
  • In recent years, the need for ship-to-ship has emerged around the world as the volume of tanker carriers increases. In the case of STS mooring, a safety review should be carried out on other standards since the characteristics are different from the mooring at a typical wharf. However, there is no separate standard about STS in Korea. Therefore, in this study, STS mooring simulation and sensitivity analysis were performed using OPTIMOOR program, a commercial numerical analysis program, to identify STS mooring characteristics. The target sea area is modeled at D2 anchorage of Yeosu Port in Korea, and modeling of the target ship is selected as the case of VLCC-VLCC. Based on this, we tried to establish the standard for STS mooring safety evaluation. Numerical simulation results show that the STS mooring changes depending on the ship load condition, weather condition(wave period and wave height), encounter angle and pre-tension of mooring line. In addition, a risk matrix was created to set the safe external force range in the sea area. It is expected that the mooring characteristics of the STS can be grasped by this result and contribute to the revision of the mooring safety assessment standard.

  • PDF

Experimental Results of Ship-To-Ship Lightering Operations Applied Velocity Information GPS

  • Yoo, Yun-Ja;Pedersen, Egil;Kouguchi, Nobuyoshi;Song, Chae-Uk
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.577-583
    • /
    • 2014
  • A ship-to-ship (STS) lightering operation takes place in order to transfer cargo (e.g. crude oil or petroleum products) between an ocean-going ship and a service ship alongside it. Instrumental measurements to accurately determine the relative speeds and distances during the approach between the vessels would benefit the operational safety and efficiency. A velocity information GPS (VI-GPS) system, which uses the instantaneous velocity measures from carrier-phase Doppler measurement, has been applied in a field observation onboard a service ship (Aframax tanker) approaching a ship-to-be-lightered (VLCC) in open waters. This article proposes to apply VI-GPS as the input sensor to a guidance and decision-support system aiming to provide accurate velocity information to the officer in charge of an STS operation. A method for precise velocity measurement using VI-GPS was described and the measurement results were compared each other with the results of Voyage Data Recorder (VDR) and VI-GPS that showed the concept of a guidance and decision-support system applying VI-GPS with the field test results during STS operations. Also, it turned out that VI-GPS has sufficient accuracy to serve as an input sensor from the field test results.

Parametric Investigation of BOG Generation for Ship-to-Ship LNG Bunkering

  • Shao, Yude;Lee, Yoon-Hyeok;Kim, You-Taek;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.352-359
    • /
    • 2018
  • As a fuel for ship propulsion, liquefied natural gas (LNG) is currently considered a proven and reasonable solution for meeting the IMO emission regulations, with gas engines for the LNG-fueled ship covering a broad range of power outputs. For an LNG-fueled ship, the LNG bunkering process is different from the HFO bunkering process, in the sense that the cryogenic liquid transfer generates a considerable amount of boil-off gas (BOG). This study investigated the effect of the temperature difference on boil-off gas (BOG) production during ship-to-ship (STS) LNG bunkering to the receiving tank of the LNG-fueled ship. A concept design was resumed for the cargo/fuel tanks in the LNG bunkering vessel and the receiving vessel, as well as for LNG handling systems. Subsequently, the storage tank capacities of the LNG were $4,500m^3$ for the bunkering vessel and $700m^3$ for the receiving vessel. Process dynamic simulations by Aspen HYSYS were performed under several bunkering scenarios, which demonstrated that the boil-off gas and resulting pressure buildup in the receiving vessel were mainly determined by the temperature difference between bunkering and the receiving tank, pressure of the receiving tank, and amount of remaining LNG.

Properties of the material on stainless steel propeller shaft with the weld working (스테인리스강 프로펠러축의 가공에 따른 재질특성에 관한 연구)

  • Son, Yeong-Tae;Choung, Kwang-Gyo;Lee, Myeong-Hoon
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.24
    • /
    • pp.4-20
    • /
    • 2008
  • Stainless steel 304 or stainless steel 630 types using propeller shaft of a small ship or a FRP fishing boat generally restrain localization corrosion and abrasion damage occurrence to shaft bearing or grand packing contact. In general, the residual stress which remains after welding or heat treatment in material can cause the stress concentration or localization corrosion. In case of small ship, stainless steel such as STS304 has long been used for propeller shaft. Meanwhile, crew of small ship tend to reuse damaged propeller shaft after repair by welding and performing heat treatment to save cost. However, it was found that reused propeller shaft by repair often caused troubles in ship's operation. In this study, the basic guideline for maintenance and treatment of propeller shaft are investigated. From the results of investigation, remarkable deterioration of the material properties and corrosion resistance on the welded work part was observed.

  • PDF

A Study on the Design of Training Contents for LNG Bunkering Workers (LNG 벙커링 종사자 교육 콘텐츠 설계에 관한 연구)

  • Yoo, Hyoung-Soo;Roh, Beom-Seok;Kang, Suk-Yong;Seo, Seong-Min;Jung, Dong-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.809-818
    • /
    • 2022
  • The number of ships using liquefied natural gas (LNG) as fuel is increasing to respond to the International Maritime Organization's (IMO) air pollutant emission regulations. At the same time, the need to expand LNG bunkering infrastructure for stable fuel supply and demand for ships is emerging. LNG bunkering is carried out in three ways: truck to ship (TTS), pipe to ship (PTS), and ship to ship (STS). In foreign countries, all three methods are being carried out, but in Korea, LNG bunkering is carried out only with the TTS method owing to the lack of infrastructure. LNG bunkering is a high-risk operation. For safe bunkering operations, the competence of the workers is extremely important, and a professional training course is required to strengthen the competence. This study was conducted to design training contents for LNG bunkering workers for fostering LNG bunkering experts and performing safe and systematic bunkering work. To this end, the current status of LNG-fueled ships and bunkering was identified, and related domestic and abroad educational contents were analyzed. In addition, opinions on the importance of educational contents were collected through expert questionnaires. Consequently, we designed training contents suitable for various training targets and divided them into basic and advanced training courses, with a duration of 4 days, and proposed. Based on the designed training contents, if additional research is conducted by sufficiently reflecting Korea's bunkering environment, it will be of great help to improve the competence of LNG bunkering workers and to foster human resources.

Fundamental study on the weldability and formability of INCOLOY825 alloys and STS316L alloys (INCOLOY 825합금 및 STS316L합금의 용접성과 성형성에 관한 기초적 연구)

  • Kim, Pyung-Su;Choi, Ho-Young;Choi, So-Young;Kim, Young-Sik;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.698-703
    • /
    • 2014
  • Currently, demand of liquefied natural gas as an alternatice energy inceases because of depletion of fossil fuels. it is accompanied by inceasing demand of LNG ship. Consequentially, it is expected that demand of bellows for LNG ship increase. The material used for LNG vessels's bellows is an alloy of INCOLOY 825 and STS316L, which are strong against low-temperature brittleness and seawater corrosion. This study establishes the welding condition of LNG vessel's bellows material in extremely low temperature, and analyzes the formability of weld through Erichsen Test. When welding was conducted at optimal condition, tensile strength of weld presneted strength value up to 90% compared with base metal. As results of formalbility through Erichsen test, very good weld that failure occrued in base metal was gotten.

Study of Practical Cathodic Protection of 2nd Class Stainless Steel Shaft by means of Al Sacrificial Anode (AL계 희생양극에 의한 2종스테인리스 강축의 음극방식 실용화 연구)

  • Son, Yeong-Tae;Lee, Myeong-Hun;Lee, Hui-Jun
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.22
    • /
    • pp.34-53
    • /
    • 2007
  • In the case of hull material. large sized merchant ships are made of steel, on the other hand FRP or wood are used for small sized fishing boats. At present in Korea approximately 88,500 fishing boats are in operation of which 70% are made of FRP In the meantime, stainless steel is frequently used as shaft materials of the small-size FRP fishing boat. Namely, the kinds of shaft materials are STS 304(18Cr-8Ni), STS 316(18Cr-12Ni-2.5Mo steel) and STS 630(17Cr-Ni-Nb steel)etc. Among these things, STS 304 which is the cheapest and having ordinary corrosion resistance is most widely used as 2nd class shaft material. But, using STS 304 for shaft system material of the small-size FRP fishing boat on seawater environments entails a severe corrosion which causes shaft system troubles. Particularly, the corrosions tend to be concentrated of the stern and bow side, propeller shaft surface of inside of stern tube and the boat having no stern cooling pipe line system. As a solution for those problems, research on the ways to mitigate corrosion on the part of 2nd class stainless steel shaft have been undertaken. In the result, not only clarification for the reason of corrosion of the part of stainless steel shaft used mainly for the small-size FRP fishing boat was done, but also most optimal corrosion protection system was developed by experimenting shaft's protection simulation based of the electrochemical cathodic protection principle. In addition, verification through the field test on the optimal cathodic corrosion protection method by means of aluminum sacrificial anode was carried out. In this study, effective and economical shaft's protection system is suggested to the small-size FRP fishing boat operator by substantiating the results obtained from the research on the optimal cathodic protection.

  • PDF

The Effect of Solution Heat Treatments on the Microstructure and Corrosion Behaviour for a Duplex Stainless Steel

  • Kim, Ki-Joon;Lee, Joon-Goo;Oh, Jae-Whan;Lee, Myung-Hoon;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.217-227
    • /
    • 2004
  • The bowl in a ship purifier suffers from high stress and high temperature in a detrimental heavy fuel oil environment. Duplex stainless steel(DSS) is a primary material to withstand this harsh condition. Newly-manufactured STS 329 grade DSS has been evaluated by various mechanical and electrochemical test methods. Eight heat treatment(HT) conditions with different temperature and time were applied to the DSS samples to improve corrosion resistance. Microstructure and polarization test results concluded the optimum HT condition was $1.090^{\circ}C$-60 minutes. Confirmation experiments for applying to a real bowl including stress corrosion cracking test exhibited the reproducibility of the optimum HT condition.