• 제목/요약/키워드: Ship wake

검색결과 170건 처리시간 0.03초

부가물-평판 접합부 주위의 난류유동 계산 (Computation of Turbulent Appendage-Flat Plate Juncture Flow)

  • 김선영
    • 대한조선학회논문집
    • /
    • 제32권2호
    • /
    • pp.43-55
    • /
    • 1995
  • 평판 위에 놓여진 스트럿(strut) 주위의 난류유동을 MAC 방법에 의하여 수치계산하였다. 난류 모델은 Baldwin-Lomax 모델이며 평판과 스트럿의 접합부 부근에서의 처리를 위하여 Buleev의 m2ixing length를 도입하였다. 계산결과의 검증을 위하여 DTRC의 풍동 실험 결과와 비교하였다. 실험에서 나타난 horseshoe vortex가 계산에서도 재현되는 등 전반적으로 계산결과와 실험결과 간에 좋은 일치를 볼 수 있었다. 그러나 접합부에서 극히 가까운 부근과 스트럿의 후류에서는 불일치를 보여 이 곳에서의 난류모델의 개선이 필요한 것으로 보여졌다. 결론적으로 평판과 스트럿의 접합부 부근의 유동을 계산함에 있어서 Baldwin-Lomax 모델은 도입된 많은 단순화를 위한 가정에도 불구하고 실용적으로 유용한 결과를 주는 것으로 보여진다.

  • PDF

패널법을 이용한 Vane-Wheel 성능해석 알고리즘 (Algorithm for Performance Analysis of Vane-Wheel using Panel Method)

  • 석우찬;서정천
    • 대한조선학회논문집
    • /
    • 제50권4호
    • /
    • pp.248-254
    • /
    • 2013
  • In this paper, we establish an analysis algorithm and a design procedure for a Vane-Wheel which is a freely rotating device behind a propeller, by using a panel method. Vane-Wheel's function is to extract energy from the propeller slipstream in turbine part which is inner part of the Vane-Wheel, and convert this energy into an additional propulsive thrust in propeller part which is outer part of the Vane-Wheel. Two parts must satisfy torque balance and thrust has to act to the ship's forward direction. A Vane-Wheel has large interaction effect with propeller since it is placed behind of the propeller. Therefore, in order to consider interaction effect correctly, incoming velocity to the Vane-Wheel in a circumferential mean wake was calculated considering induced velocity from propeller to the Vane-Wheel. Likewise, incoming velocity to the propeller was calculated considering induced velocity from the Vane-Wheel to the propeller. This process is repeated until a converged result is obtained.

Effects of Air Injections on the Resistance Reduction of a Semi-Planing Hull

  • Kim, Gyeong-Hwan;Kim, Hyo-chul
    • Journal of Hydrospace Technology
    • /
    • 제2권2호
    • /
    • pp.44-56
    • /
    • 1996
  • The effects of the air on the reductions in resistance when supplied under the bottom of a semi-planing ship with a step are investigated in the present study. A 1.275m long FRP model is constructed and the pressure and viscous tangential stresses over the planing surface of the hull with and without air supply are measured through measuring holes carefully selected at the towing tank of Seoul National University. Locations of holes most suitable for air injection are surveyed in front of the planing surface of the model with careful examinations of the limiting streamlines and pressure distributions measured without air supply. At those locations, found to be just front of the step, air has been supplied into a wake region to form an air filled cavity of fixed type. Flow rates and pressure of the supplied air as well as the local pressure and shear stress distributions on the hull surface are measured to understand the physics involved as well as to determine the conditions most effective in resistance reduction at the design speed. It has been found that total resistance of the stepped semi-planing hull can be considerably reduced if an air cavity generated by an adequate air injection at the bottom of the hull near the step. After the cavity optimized at the given speed, air bubbles also have been generated right behind the point where dividing streamlines re-attach to further reduce the frictional resistance but found to be not so effective as the air cavity in resistance reductions.

  • PDF

Calculation of Turbulent Flows around a Submarine for the Prediction of Hydrodynamic Performance

  • Kim, Jin;Park, Il-Ryong;Van, Suak-Ho;Kim, Wu-Joan
    • Journal of Ship and Ocean Technology
    • /
    • 제7권4호
    • /
    • pp.16-31
    • /
    • 2003
  • The finite volume based multi-block RANS code, WAVIS developed at KRISO, is used to simulate the turbulent flows around a submarine with the realizable $\textsc{k}-\varepsilon$ turbulence model. RANS methods are verified and validated at the level of validation uncertainty 1.54% of the stagnation pressure coefficient for the solution of the turbulent flows around SUBOFF submarine model without appendages. Another SUBOFF configuration, axisymmetric body with four identical stem appendages, is also computed and validated with the experimental data of the nominal wake and hydrodynamic coefficients. The hydrodynamic forces and moments for SUBOFF model and a practical submarine are predicted at several drift and pitch angles. The computed results are in extremely good agreement with experimental data. Furthermore, it is noteworthy that all the computations at the present study were carried out in a PC and the CPU time required for 2.8 million grids was about 20 hours to get fully converged solution. The current study shows that CFD can be a very useful and cost effective tool for the prediction of the hydrodynamic performance of a submarine in the basic design stage.

프로펠러에 의한 LNG 운반선 이중모형 선미의 속도변화 계측 (Measurement of Velocity Field Change around Stern of LNG Carrier Double Body Model by Propeller)

  • 김병준;최순호;김형태;반석호
    • 대한조선학회논문집
    • /
    • 제42권5호
    • /
    • pp.448-457
    • /
    • 2005
  • The experiment was performed at the large wind tunnel of the Chungnam National University to measure the velocity distribution around the stern of a Liquefied Natural Gas Carrier model. The data, mean velocity vectors of turbulent shear flows at the stern and near-wake including the propeller plane, were obtained by a five-hole Pilot tube for the double body model fixed inside the wind tunnel test section. The present result of the double body model shows a close agreement with the result of the lowing tank experiment performed by the KRISO for the same ship model. The characteristics of the LNG stern flow are discussed based on the measured velocity distribution. The data can be very useful for the validation of some numerical methods in computational fluid dynamics.

주기 회전하는 원형 실린더 주위 층류 유동장의 수치 시뮬레이션 (Numerical Simulation on Laminar Flow Past a Rotary Oscillating Circular Cylinder)

  • 박종천;문진국;전호환;서성부
    • 대한조선학회논문집
    • /
    • 제42권4호
    • /
    • pp.368-378
    • /
    • 2005
  • The effects of rotary oscillation on the unsteady laminar flow past a circular cylinder. are numerically investigated in the present study. The numerical solutions for the 20 Wavier-Stokes equation are obtained using a finite volume method Tn the framework of an overlapping grid system. The vortex formation behind a circular cylinder and the hydrodynamics of wake flows for different rotary oscillation conditions are analyzed from the results of numerical simulation. The lock-on region is defined as the region that the natural shedding frequency due to the Karmann Vortex shedding and the forcing frequency due to the forced oscillating a cylinder are nearly same, and the quasi-periodic states are observed around that region. At the intersection between lock-on and non-lock-on region the shedding frequency is bifurcated. After the bifurcation, one frequency fellows the forcing frequency($S_f$) and the other returns to the natural shedding frequency($St_0$). in the quasi-periodic states, the variation of magnitudes and relevant phase changes of $C_L$ with forcing phase are examined.

선저청소로봇 저항성능 향상에 관한 수치적 연구 (Numerical Study on the Enhancement of the Resistant Performance of ROV)

  • 서장훈;전충호;윤현식;전호환;김수호;김태형;우종식;주용석
    • 한국해양공학회지
    • /
    • 제24권4호
    • /
    • pp.23-31
    • /
    • 2010
  • The flow around a remotely-operated vehicle (ROV) has been investigated numerically to improve the resistant performance by modifying the hull form of the ROV. In the case of the base hull form considered in this study, form drag rather than friction drag was the dominant component of total drag. Subsequently, the surfaces that were most susceptible to local pressure effects were modified to give them a more streamlined shape. Eleven different hull forms were chosen to undergo surface modification for drag reduction. In addition, four different boat-tail appendages with different slant angles were installed at the stern to reduce the wake vortices that are induced by the local regions of very low pressure. Consequently, a total of 11 different hull forms for drag reduction were considered. The final hull form, which combined the hull for which surface modification resulted in the lowest drag with a boat-tail appendage with a 15-degree slant angle, resulted in a drag reduction of 20%.

대형 유조선의 저항 및 추진성능에 대한 축척효과의 수치적 연구 (Computational Study of the Scale Effect on Resistance and Propulsion Performance of VLCC)

  • 최정은;김정훈;이홍기
    • 대한조선학회논문집
    • /
    • 제48권3호
    • /
    • pp.222-232
    • /
    • 2011
  • This article examines the scale effect of the flow characteristics, resistance and propulsion performance on a 317k VLCC. The turbulent flows around a ship in both towing and self-propulsion conditions are analyzed by solving the Reynolds-averaged Navier-Stokes equation together with the application of Reynolds stress turbulence model. The computations are carried out in both model- and full-scale. A double-body model is applied for the treatment of free surface. An asymmetric body-force propeller is used. The speed performances including resistance and propulsion factors are obtained from two kinds of methods. One is to analyze the computational results in model scale through the revised ITTC' 78 method. The other is directly to analyze the computational results in full scale. Based on the computational predictions, scale effects of the resistance and the self-propulsion factors including form factor, thrust deduction fraction, effective wake fraction and various efficiencies are investigated. Scale effects of the streamline pattern, hull pressure and local flow characteristics including x-constant sections, propeller and center plane, and transom region are also investigated. This study presents a useful tool to hull-form and propeller designers, and towing-tank experimenters to take the scale effect into consideration.

새로운 단면을 이용한 고효율 프로펠러 설계법 (A Propeller Design Method with New Blade Sections)

  • 이진태;이창섭;김문찬;안종우;김호충
    • 대한조선학회지
    • /
    • 제26권3호
    • /
    • pp.29-40
    • /
    • 1989
  • 고효율 및 캐비테이션 특성이 우수한 프로펠러 날개단면을 개발하기 위한 일련의 설계 제작 시험 및 해석과정을 기술하였다. 여러 날개단면의 양력-항력곡선과 캐비테이션 특징을 비교하기 위하여 11개의 2차원 날개 단면을 설계 제작 시험하였다. 개발된 단면(KH18 단면)은 양력-항력 곡선과 캐비티 초생 곡선에서 기존 단면에 비하여 폭이 넓기 때문에 불균일한 선미후류에서 작동하는 프로펠러의 날개 단면으로서 적합하리라 생각된다. 개방단면을 사용한 프로펠러 설계법을 제시하였다. 코오드 방향 부하분포 형상이 프로펠로 성능에 미치는 영향을 고찰하기 위하여 3가지 기준 부하 형상에 대한 프로펠러를 각각 설계하였다. 또한 날개단면이 프로펠러 성능에 미치는 영향을 비교하기 위하여 기존 날개단면만을 사용한 프로펠러를 2개 설계하였다.

  • PDF

연안 환경에서 클러터에 강인한 능동소나 탐지 알고리듬 (A robust detection algorithm against clutters in active sonar in shallow coastal environment)

  • 장은정;권성철;오원천;이정우;신기철;김주호
    • 한국음향학회지
    • /
    • 제38권6호
    • /
    • pp.661-669
    • /
    • 2019
  • 연안 환경에서 소형 표적의 탐지에는 고주파 능동소나가 적합하다. 연안 환경에서 고주파 능동소나를 사용할 경우 해양 생물 소음, 선박 소음, 항적 등에 의한 클러터로 인하여 오경보율이 매우 높다. 본 논문에서는 연안 환경에서 능동 소나에서 클러터에 강인한 탐지 알고리듬을 제안한다. 제안된 알고리듬은 측정치 추출 시 신호의 통계적인 특징을 이용하는 Constant False Alarm Rate(CFAR)와 클러스터링 알고리듬을 이용하여 클러터 제거율을 높인다. 제안 된 탐지 알고리듬은 해상 시험을 통하여 검증하였으며, 약 96 % 이상의 클러터를 제거하였다.