DOI QR코드

DOI QR Code

A robust detection algorithm against clutters in active sonar in shallow coastal environment

연안 환경에서 클러터에 강인한 능동소나 탐지 알고리듬

  • 장은정 (엘아이지넥스원 해양1연구소) ;
  • 권성철 (엘아이지넥스원 해양1연구소) ;
  • 오원천 (엘아이지넥스원 해양1연구소) ;
  • 이정우 (엘아이지넥스원 해양1연구소) ;
  • 신기철 (엘아이지넥스원 해양1연구소) ;
  • 김주호 (국방과학연구소)
  • Received : 2019.08.30
  • Accepted : 2019.10.02
  • Published : 2019.11.30

Abstract

High frequency active sonar is appropriate for detecting small targets such as a diver in coast environment. In case of using high frequency active sonar in shallow coastal environment, a false alarm rate is high due to clutters caused by marine biological noise, ship noise, wake, etc. In this paper, we propose an algorithm for target detection which is robust against clutter in active sonar system in shallow coastal environment. The proposed algorithm increases the rate of reduction clutter using calculation of statistical characteristics of signal and a clustering method. The algorithm is evaluated and analysed with sea trial data, as a result, that shows the rate of reducing rate of clutter of 96 % and over.

연안 환경에서 소형 표적의 탐지에는 고주파 능동소나가 적합하다. 연안 환경에서 고주파 능동소나를 사용할 경우 해양 생물 소음, 선박 소음, 항적 등에 의한 클러터로 인하여 오경보율이 매우 높다. 본 논문에서는 연안 환경에서 능동 소나에서 클러터에 강인한 탐지 알고리듬을 제안한다. 제안된 알고리듬은 측정치 추출 시 신호의 통계적인 특징을 이용하는 Constant False Alarm Rate(CFAR)와 클러스터링 알고리듬을 이용하여 클러터 제거율을 높인다. 제안 된 탐지 알고리듬은 해상 시험을 통하여 검증하였으며, 약 96 % 이상의 클러터를 제거하였다.

Keywords

References

  1. R. T. Kessel and R. D. Hollett, "Underwater intruder detection sonar for harbour protection: state of the art review and implications," NATO Undersea Research Centre, Tech. Rep., 2006.
  2. E. J. Jang, W. T. Oh, J. W. Lee, K. J. Kang, and J. Kim, "Design signal processing system of active sonar for swimmer detection in coast environment," (in Korean), J. IEIE. 55, 1373-1383 (2018).
  3. P. P. Gandhi and S. A. Kassam, "Analysis of CFAR processors in nonhomogeneous background," IEEE Trans. on Aerospace and Electronic Systems 24, 427- 445 (1988). https://doi.org/10.1109/7.7185
  4. The Cerberus Wideband Swimmer Detection Sonar, https://magazines.marinelink.com/Magazines/MarineTechnology/200611/flash/html5forpc.html?page=35/, (Last viewed November 19, 2019).
  5. S. Stergiopoulos, "Advanced beamformers," in Handbook of Advanced Signal Processing Theory and Implementation for Sonar, Radar and NonInvasive Medical Diagnostic Systems, edited by S. Stergiopoulos (CRC Press, Florida, 1989).
  6. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing (Prentice Hall, New Jersey, 1989), pp. 558-560.
  7. M. J. Crocker, Handbook of Acoustics (Wiley-Interscience, New York, 1998), pp. 452.
  8. B. R. Mahafza and A. Z. Elsherbeni, MATLAB Simulations for Radar Systems Design (CRC Press/Chapman & Hall, New York, 2004), pp. 209-214.
  9. E. Jeong, T. Shim, and J. Kim, "Underwater acoustic image classification of a cylindrical object using the hough transformation and nth degree polynomial interpolation," (in Korean), J. IEIE. 50, 139-200 (2013). https://doi.org/10.5573/ieek.2013.50.3.139
  10. M. Ester, H. Kriegel, J. Sander, and X. Xu, "A densitybased algorithm for discovering large clusters in large spatial databases with noise," Proc. Second Int'l Conf. Knowledge Discovery and Data Mining, 226-231 (1996).