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Abstract

The turbulent flow around the strut mounted on the plate is studied numerically. The
main objective of this paper is to validate the numerical scheme by the comparison of
the computed results with the measured one, especially, to investigate the applicability
of the Baldwin-Lomax(B-1.) model to the juncture flow.

Computations are made by solving Reynolds-averaged Navier-Stokes equation with
MAC method. The computed results are compared with experimental data of
Dickinson[3), collected in the wind tunnel at DTRC. Comparisons show good
agreements generally except at the region of wake and very near the juncture. Reynolds
stress model seems to be required to improve the accuracy of computation at the
region. It can be concluded that B-L model is practically applicable to the juncture flow
in spite of the many simplification of the turbulence modelling in B-L model.

2 <%

B ¢ TN 2ER(strut) FH] G52 MAC 4ol g8l AABIY. ¢
298 Baldwin-Lomax Edoln] @} 2Esie] HFE R2ore] A2lE #1319 Buleeve
m2ixing lengthE =9J8ch ANt 2#F5E 913l DTRCH % 4% A} vw3t
ol A¥lM UEeld horseshoe vortex7t AN E QA T Aty os Adbzdsiel A44
3 e} F& AHNE B F AT 2 FJERM 33 sk 220 2B ERAME
BUXE B o] Rore] HREHe] sjie] WaF sog Ryt ABHOE Yy AE

Manuscript received : May 13, 1994, Received maneuscript received : December 7, 1994
* Member, Korea Research Institute of Ship and Ocean Engineering
** Hiroshima University



44

Sun-Young Kim and Kazu-hiro Mori

go] HEN F2o {58 ANl 3lolA Baldwin-Lomax 292 :3¥ #B2 dasE 9
7Pl Bala AeAos F8% A8 Fe o2 R

1. Introduction

Recently, interests in the juncture flows
have been increased in ship hydrodynamics
because of the demand for high speed ships.
Since high speed ships require both high
powering system and safe controllability, they
often have more and larger appendages than
conventional ships. It follows that the
appendage resistance takes large portion of the
total resistance for high speed ships. To
estimate the appendage resistance accurately, it
requires the knowledge of the structure of
juncture flow.

The juncture flow formed in the juncture
between the appendage and the hull is
characterized by the horseshoe vortices which
are generated near the leading edge of the
appendage. The flow is completely
three-dimensional and it becomes more
complicated as the horseshoe vortices interact
with the boundary layer flow developed on the
appendage.

Many experimental studies have been carried
out so far to investigate the detailed
mechanism of the juncture flow with a simple
strut-plate juncture model{4-10]. Although they
are of great help to understand the flow, some
uncertainties are still remained due to the lack
of the resolution of the experimental data.
Numerical computation seems to be required to
get more information. Furthermore it is of
practical importance to develop a numerical
code for the design of appendage configuration
with smaller drag and good efficiency.

To simulate the juncture flow by solving
Navier-Stokes equations, we meet a number of
difficulties. Among these are, overcoming an
enormous computational time needed to resolve

all of the scales involved and finding a
turbulence model that provides a sufficiently
accurate  representation of the various
three-dimensional shear layers with separation
and reattachment. Today’s rapid advance in
computer enables us to carry out computation
with a grid of high resolution to a extent. On
the other hand, any existing turbulence mmodel
have still limits in describing the complicated
flow near the juncture and in the separated
wake region because all the turbulence model
up to now are developed based on the
experimental data with a simple geometry and
flow.

Recently, computational works on the
juncture flow have been made by Sung and
Yangil0], Chen and Patellll], and Burke[12]
with a Baldwin-Lomax model(B-L model), a
two-layer model and a simple mixing length
model as a turbulence model respectively. They
compared computed results with DTRC
experimental datal3] and the comparisons show
general good agreements. Their results
encourage us to extend our laminar code to
turbulent code by introducing B-L model.
Although B~L model is a  simple
eddy-viscosity algebraic model, it would be
worth while to be evaluated for juncture flow.
This is because even other higher order model
is not valid any more very close to the wall. It
seems that B-L model can describe rather
accurately with a high clustered grid near the
wall.

The main objective of this paper is to
validate the numerical scheme, especially, to
investigate the applicability of the B-L model.
Computations are made by solving
Reynolds-averaged Navier-Stokes equation
with MAC method which was developed for
the computation of the laminar juncture
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flow{1,2]. Comparison of the computed results
are made with experimental data of
Dickinson[3] collected in the wind tunnel at
David Taylor Research Center. Generally they
show good agreements in spite of the many
simplification of the turbulence modelling in
B-L model. Through the comparison, the
practical applicability and the limit of the B-L
model to the juncture flow are discussed.

2. Computational Method

2.1 Governing Equation

The govermning equations for the
incompressible turbulent flow are given by the
Reynolds averaged Navier-Stokes and
continuity equations. With Boussinesq's eddy
viscosity hypothesis, they can be written in the
nondimensionalized form as follows;

u,tuu +vuy, +wu, =—p,+ Rl v

n
+ uQu), + vlu,+v) + wlu, +wy),

v, tuv, +vv,+wv, =—p,+ Rl viy

+ vlu, +vi), + u@2v), + vlv,+wy), (1)

w,tuw, +vw, tww,=—p,+ Rl viw
n
+ wlu, +w) + w(v,+w,) + n(2w,),

u,+v,+w,=0, (2)

where subscripts represent partial
differentiations with respect to the referred
variables and (u, v, w) and p are the velocity
components in (x, y, z)-direction of the
cartesian coordinates and the static pressure

respectively. v, represents the eddy viscosity.

All the variables are nondimensionalized by the
chord length of the strut L, the uniform flow

velocity U,, and the density of water p. R,
is the Reynolds number based on U, and L.

A body-fitted coordinate system is adopted
and transformation is given by

E=&(x,y,2), n=nx,y.2), {=¢t(x,v,2) . (3)
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With  these relations, the following
transformed governing equations are obtained.

u;+ Uue+Vu,+Wu, = Rl v
—(Sxpé+7]xpn+Cxpt)+Rx

vit Uve+Vv,+Wv, = R} viv
—(&,pe+n,0,+ &0y +R, (4)
Wt+ UW5+VW7+WW; = l% VZW

- (sze""?zD:,'f'CzDg) +Rz

&ug +pu,+8u L’+Eyv€+7]yvv (5)
+ewtéwetpw,+Ew, =0,

where R, R, and R,
Reynolds stress terms transformed from the
last three terms of RHS of Eq.(1) and U, V
and W are the contravariant velocity
components defined as

represent the

Sa +&v+Ew
7 + v+ p,w ()]
tu +Ev+iw

E<c
(T

Laplacian v 2 can be expressed in the body
fitted coordinates in the following form;

viq= agg+ ’Bqu*' cay
+ 28(]5,,'*‘26(]”;'*"2?(] te (7)
+ ga.t+hg,+1q,

where a, b and so on are defined as

a=vé-vE, b=vy- vy,
£=V§‘V§, a=V$'V77. (8)
e=vy- V¢, ?=v5-v§,
g=v% h=vi)i=v%

22 Numerical Scheme and Boundary

Condition
The computations are made by MAC method
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where Poisson equation for the pressure is
derived by taking a divergence of the
momentum  equation and  satisfying  the
continuity equation. The Poisson equation for
the pressure is solved iteratively by using the
relaxation method and the velocities are
updated from the momentum equation. The
finite difference equations are derived on a
regular grid system. So all the variables are
defined on the grid nodes. For the spatial
differencing scheme, 2nd order central
difference is used while the upwind scheme for
the convective term. The Euler explicit scheme
is used for the time marching procedure. The
computation starts from the still state and the
flow is accelerated up to a given constant
velocity for the numerical stability.

A C-type grid is adopted for the
computation. The coordinate system and grid
topology are shown in Fig.l. In the physical
domain, a space-fixed cartesian coordinate
systern is used whose origin is located at the
center of the strut on the plate and x~, y-
and z- axes are in the uniform flow, lateral
and vertical direction respectively. In the
transformed body-fitted coordinate system, £—
and n—axes are the girthwise of the strut and
the normal to the surface of strut and {—axis
coincides with z-axis. Therefore the surface of
the strut lies in the 7~constant plane and the
plate lies in the ¢-—constant plane. On the
strut and the plate, no-slip condition is used
for the velocity and Neumann condition is
obtained from the momentum equation for the
pressure. Quter boundaries are taken on the
plate including the inflow and the lateral
boundaries where a turbulent boundary layer
profile with constant pressure is prescribed
while the v~component of velocity is obtained
from the momentum equation. The inflow
profile is determined by specifying the position
of the leading edge of the plate. The height of
the strut is assumed to be infinite and the zero
gradient conditions are used for all variables.
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Fig. 1 Grid and coordinate system for DTRC
model

On the downstream boundary, the velocities
are linearly extrapolated in the streamwise
direction by assuming the diffusion in the
streamwise direction is negligible but zero
gradient condition is used for the pressure.

2.3 Turbulence Mode!

The turbulence model for the flow around
the juncture is complicated and not well
developed yet. In this study, the turbulence
transport is described by using an algebraic
eddy-viscosity model proposed by Baldwin &
Lomax{13] which has been used widely in
computational fluid dynamics for its simplicity.
Modified length scale[14] is incorporated into a
Baldwin-Lomax model to treat the comner flow
where the turbulence is influenced by both
plate and strut.

The procedure of applying Baldwin-Lomax
model for the comer flow is as follows. As
sketched in Fig.2, in each (J-K) sectional
plane, the computational domain is a comer
formed by two walls. The local coordinates

(ny n,) will be used for the discussion

which has an origin on the commer. The eddy
viscosity ¥, is computed in the inner and

outer regions separately. In the inner region,
the eddy viscosity 1is given by the
Prandtl~van Driest formulation

(V) o= (x DD ? ] , (@

Transactions of SNAK, Vol 32, No. 2, May 1955



Computation of Turbulent Appendage-Flat Plate Juncture Flow 47

Location of F,,.,,

: /
7

ny,J
Fig. 2 Definition for the coner flow

where x=0.4 is von Karman’s constant
and lel is the magnitude of the vorticity. The
definition of [ is critical for the evaluation of
the eddy viscosity. Buleev’'s mixing length[15]
for the open comner formed by the normal
intersection of two planes is used for the
present study. It is represented by following
formula.

2n,n,
n,+n,+( n,2+ n,%)

= (10)
The van Driest damping factor D is given by

D=1—exp(— 17/26) 11

and
I*= “Ll=—’f\/—%‘"— (12)

where r,, is the wall shear stress.

In the outer region,

(Vt) outer £C cp F wake F kleb (13)
where
F = smaller of  max B rmax (14)
wake { 0.257 o Ui/ F e

The quantity Upy is the difference between

the maximum and the minimum resultant
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velocity in the profile.

UDH.*:(VU +vit+w MAX 15)
-—(Vu +vitw MIN

In the above formulation, £=0.0168 is the
Clauser’s constant and the quantity F .., is

the maximum value of F( /)= /|o) D, and
lmax is the value of [ at which F .,

occurs. The Klebanoff intermittency factor
Fie is given by

F e =1 l+5.5(‘C—l@—1)6] - (16)

In the outer formulation, the constants C,,
and C ., depend on the condition of flow[16].
In this study, however, C ,=1.6 and C ,=0.3
are used, which were recommended originally
by Baldwin and Lomax[13). There are some
ambiguity in finding F ., because several
peaks are present in the profile of F for the
complex flow as pointed out by Visbal and
Knight{16]. The outermost peak is chosen as
F ..« among several peaks to avoid the
abrupt change of the computed length scale
in the streamwise direction. However, if the
chosen peak is smaller than the 20% of the
maximum value of F in the profile, it is
discarded to avoid finding the peak in the
outside of the boundary layer.

The plane is divided into four regions I, II,
HI and IV as shown in Fig. 2. In regions I
and II, D is evaluated at the wall n,=0 for

region I and in regions Il and IV, it is
evaluated at the wall n,=0. The search for

F nax proceeds outward from the wall either
from n,=0 for the region [ or from n,=0 for
the region IV. The values of F ., in the
regions II and III are constant, equal to the
value of F o, at M and N respectively.
Similar treatment is also applied to the wake
region by assuming the slip wall on the
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center wake plane.
3. Validation of Computation

3.1 Review of Experiments at DTRC

The computed results will be compared
with the experimental Data of Dickinson[3]
that were measured to serve as a test case
for the numerical modelling of the juncture
flow. The experiments were carried out in the
wind tunnel at DTRC of which the test
section is 0.61m X 1.22m and 4.57m long. The
strut was mounted on the top of the tunnel
that was used as the flat plate of the
appendage juncture. Corner fillets were added
to the juncture between the top and side
walls of the tunnel to reduce the corner
secondary flows. The strut was assumed to
be semi-infinite, spanning the height of the
wind tunnel! corresponding to 4 times of the
chord length of the strut. The strut has the
section which consists of a 3:2 elliptical nose
and NACAO0020 tail joined at the location of
maximum thickness. The resuiting strut has
a chord of 259cm and a thickness of 6.lcm,
giving a 10% of blockage ratio. A 32
elliptical leading edge was chosen to
strengthen the cross-stream flow. The strut
was fitted with 0.33mm trip wires at 5%
chord.

The experiments were made at the
Reynolds number of 5x10° based on the free
stream velocity and the chord length of the
strut. The experimental data include the oil
film visualizations, static pressure distribution
on the flat plate and the hot-film anemometer
measurements of mean and fluctuating
velocity components on the seven planes
shown in Fig.3. The inflow at the upstream
plane located at x=-0.75 was thought of as a
two-dimensional fully developed turbulent
boundary layer. In this upstream plane, the
99% boundary-layer thickness is about 2.5
inch. with a momentum thickness Reynolds
number of approximately 15,000.

Sun Young Kim and Kazu-hiro Mori

X/C = -0.75

X/C = 0.8
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Fig. 3 Measurements planes in DTRC data

3.2 Computational Condition

The flow is assumed to be fully turbulent so
that the transition on the strut is not
considered. The computation has been made at
the Reynolds number of 5x10°. Based on the
measured data on the upstream plane x=-0.75,
the 1/6.75-th boundary layer with a boundary
layer thickness 0.245 is specified at the
upstream and side boundaries. In other words,
the 1/6.75-th boundary layer is assumed to be
developed from the leading edge of the plate at
x=-17. With this inflow condition, the boundary
layer thickness at the leading edge but without
the strut becomes 0.254. Good agreements
between the computed and the measured
velocity profile at the upstream plane (x=-0.75),
as shown in Fig.14(a), confirms the reasonable
inflow boundary condition.

The flow is assumed to be symmetry so
that only half of the flow region is computed.
In the computation with half C-grid, the
number of grid points is 81x41x35 and the
minimum spacing and the time step are 0.0002
and 0.0001 respectively. Fig.1 shows the grid
and coordinates system used for the present
computation.

The computing domain is as follows:

Transactions of SNAK, Vol 32, No. 2, May 1995
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—2.05x<4.0,0.0<y<2.2,0.0<2<1.0

The flow is accelerated until t=05 and the
computation is done up to t=5.0. Fig.4 shows
the convergence history of the forces acting on
the strut. Here, Cg, and Cy are pressure drag
and frictional drag coefficients
nondimensionalized by 0.50L2U? respectively..
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Fig. 4 Convergence history of the forces acting
on the strut

3.3 Results and Discussion

The computed particle paths on the upstream
symmetry plane, shown in Fig.5, show the
existence of the primary and secondary vortex
clearly., Both are located closer to the plate.
The secondary vortex is extremely small in
size and confined to the comer so that it
seems difficult to verify its presence in
experiments. The paosition of the core of the
computed primary vortex is (~0.07, 0.0065).

In Fig.6, the simulated limiting streamlines
on the plate are compared with the oil-film
flow visualization results. Both show the
separation line wrapping the strut and *V”
shaped line behind the trailing edge. The
separation point in front of the strut lies ~0.17
in computation and it is a little farther from
the leading edge than that in experiment.
However the breadth of the “V" shaped line

RIEH B GHR N B 32 % 5 2 W 19954 55
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Fig. 5 Particle path on the plane of symmetry
upstream

Fig. 6 Limiting streamlines on plate and oii~film
visualization results

agrees with the visualized results quite well.
The attachment line can be also found near the
strut. The primary vortex travels down
between the primary separation line and the
attachment line while secondary vortex
between the attachment line and strut. The
separation appears near the trailing edge in the
computed flow although no separation was
observed in the experiments[3). This may be
due to the insufficient grid resolution as
Sung{10] showed that the size of trailing edge
flow separation can be much reduced by using
finer grids. The more detailed description on
the flow structure of the juncture flow
including separation can be found in the
references{17,18].

When the vortex is close to the body, the
surface pressure is dropped due to the
acceleration of the flow by the vortex there.



50

Thus we can see the footprint of the horseshoe
vortex from the pressure distribution on the
plate shown in Fig.7. There are kinks in the
contours around the leading edge which reflect
the horseshoe vortex over the plate. We can
see two horseshoe vortices travelling
downstream around the strut; larger kinks are
due to the primary vortex and the the smaller
ones closer to the body are due to the
secondary horseshoe vortex.

e
e
d

Fig. 7 Pressure contours on the plate

@

Fig.8 shows the pressure distributions on the
flat plate compared with the measured ones
along the constant y lines. The agreement is
good although the computation generally
overpredicts especially near the maximum
thickness of the strut (x=0.18). This trend is
similar to Sung's computation[19]. Sung
claimed that one possible source for this
discrepancy is the blockage effect of the wind
tunnel. However more careful examination
seems to be necessary because Burke’s onel12]
shows also overpredicted pressure distribution
although he includes the wind tunnel wall in
his computation.

Figs.9 to 13 compare the cross flow velocity
vectors and longitudinal velocity contours with
the experimental data on the planes at x=0.18,
075, 093, 1.05 and 15 which are shown in
Fig.3. At x=0.18, where the thickness of the
strut is maxXimum, geometry induced or
pressure driven outward cross flows are so
dominant that they mask the horseshoe
vortices. However, at x=0.75, where the
geometry induced flow becomes weak, the
primary horseshoe vortex can be detected from

Sun Young Kim and Kazu-hiro Mori
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Fig. 8 Pressure distribution on the plate

the decrease of inward velocity, which lies
close to the plate around y=0.2. The secondary
horseshoe vortex is seen near the comer at
x=0.18, which could not be observed in the
experimental data due to the insufficient
measuring data. The existence of the primary
vortex can be seen also from the depressions
in the contours of streamwise velocity. These
depressions are the result of the momentum
transfer by the horseshoe vortex between the
slow flow near the plate and the flow with
higher momentum away from the plate. These
depressions become bhigger and wider as flow
goes downstream since the size of horseshoe
vortex becomes larger due to the diffusion. At
x=0.93, just ahead of the trailing edge,
computation predicts a separation near the
cormner but separation does not occur in the
experimental data. Further examination for the
treatment of the turbulent transport and grid
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Fig. 13 Comparison of cross-flow velocity
vectors and steamwise  velocity
contours at x=15

refinement would be necessary to enlighten the
reason for the prediction of earlier separation.
It should be noticed here that Sung[10] and
Patel{11] also found the separation in their
computed results on this plane; they use the
Baldwin-Lomax model and two-layer model as
a turbulence model, respectively. Strong trailing
edge vortex is observed at x=1.05, just behind
the trailing edge, although it is difficult to find
out it in the experimental data. The outward
velocity at x=1.05 in the experimental data
seems to be erroneous as Sung[10] discussed.
At x=1,5, in the far wake, the pressure driven
cross flow velocity almost disappears and the
vortex can be clearly seen. The computation
predicts the vortex very well but the core of
the vortex is a little lower and closer to the
symmetry plane compared with the
experimental data.

A more detailed comparison of the velocity
profiles normal to the plate and normal to the
strut are given in Fig.14 and Fig.15. Generally
they show good agreements except near the
region very close to the juncture. Computation

Sun Young Kim and Kazu-hiro Mori
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Fig. 14 Comparison of velocity profiles normal to
the plate(e ¢ -: measured, —
computed)

underpredicts u, the streamwise component of
velocity, near the juncture. The deviation
becomes larger as the flow goes to the trailing
edge and the computation predicts the earlier
separation at x=0.75. However the influence of
the separation is confined to the juncture
region and the profiles agree well outside the
juncture. Relatively, the cross flow velocity
component v, w are simulated well so that we
can say that the horseshoe vortex is properly
captured in the computation. In the wake, the
computed wake is much smaller than the
measured one on the symmetric plane all over
the height although the comparison shows

Transactions of SNAK, Vol 32, No. 2, May 1995
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Fig. 15 Comparison of velocity profiles normal to
the strut(e = =: measured, —
computed)

good agreements in the region a little apart
from the symmetry plane. Increasing the grids
in the wake can not improve the prediction so
much because the prediction of smaller wake is
observed only on the symmetry plane. Some
special treatment of the computation on the
symmetry plane seems to be required.

Fig.16 and Fig.17 ‘show the comparison of
the Reynolds stress profiles —av and — uw.

The computed Reynolds stress follow the
measured data qualitatively. However, they
show large differences in the wake even
qualitatively. The measured Reynolds stresses
are large on the symmetry plane but computed
ones are zero because of symmetry condition.
In addition, the computed and measured

Reynolds stress —uv shows opposite sign

near the symmetry plane. These mean that
the Reynolds stress are not in proportion to the
velocity gradient in the wake of the juncture
flow. In other words, the eddy viscosity
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model itself is not valid in this region, The
same argument can be made with measured
velocities and Reynolds stresses since the
computed and measured velocities have same
sign at least. The similar discussions can be
found also in many other experimental
studies[20-23]. To predict the flow more
accurately in the wake of juncture flow, the
more advanced turbulence model seems to be
required. The algebraic stress model, one of
second closure turbulence model, may be
promising one.

4. Conclusion

The computational method for the turbulent
juncture flow 1is presented in this paper.
Computations are made by ' solving
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Fig. 17 Comparison of uw Reynolds stress
profles (¢ o o: measured, ——
computed)

Reynolds-averaged Navier-Stokes equation
with MAC method and the turbulence transport
is modelled with a Baldwin-Lomax model and
Buleev's moadified length scale.

To validate the computational method, the
computed results are compared  with
experimental data. The comparisons show good
agreements generally. The introduction of the
modified length and Baldwin-Lomax model
seems to give a reasonable prediction even for
the complicated juncture flow. However, some
discrepancies are observed very near the
juncture and in the wake. The more study for
the treatment of Baldwin-Lomax model in this
region seems to be required Since the
eddy-viscosity assumption is not valid in the
wake, introduction of the algebraic stress
model to the juncture flow would be an
interesting topic for the future research.

Sun Young Kim and Kazu-hiro Mori
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