• 제목/요약/키워드: Ship operator

검색결과 153건 처리시간 0.021초

선박 유지보수를 위한 선체 두께 관리 시스템 개발 (Development of Hull Thickness Management System for Ship Management System)

  • 박개명;이정렬;이경호
    • 한국CDE학회논문집
    • /
    • 제20권3호
    • /
    • pp.281-290
    • /
    • 2015
  • The specific goal of the SMS (Ship Management System) is to increate ship safety and decrease maintenance fee. Equipment of ship is managed by PMS (Planned Management System), subsystem of SMS. But hull has not managed by ship manager. So, the Classes have developed the system for hull maintenance. Recently, the ship maintenance system has been developed for satisfying operator's requirements such as managing maintenance data as integrated platform, intuitive manipulation and design for ease of use. To reflect such requirement, 3D Model based maintenance system was introduced for ship in operation stage. Hull items that have to be inspected, repaired, replaced, are stored in integrated data platform with drawing, reports, and etc. and completely linked to 3D product Model. This system is specially developed for measurement and maintenance of hull thickness.

Estimation of ship operational efficiency from AIS data using big data technology

  • Kim, Seong-Hoon;Roh, Myung-Il;Oh, Min-Jae;Park, Sung-Woo;Kim, In-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.440-454
    • /
    • 2020
  • To prevent pollution from ships, the Energy Efficiency Design Index (EEDI) is a mandatory guideline for all new ships. The Ship Energy Efficiency Management Plan (SEEMP) has also been applied by MARPOL to all existing ships. SEEMP provides the Energy Efficiency Operational Indicator (EEOI) for monitoring the operational efficiency of a ship. By monitoring the EEOI, the shipowner or operator can establish strategic plans, such as routing, hull cleaning, decommissioning, new building, etc. The key parameter in calculating EEOI is Fuel Oil Consumption (FOC). It can be measured on board while a ship is operating. This means that only the shipowner or operator can calculate the EEOI of their own ships. If the EEOI can be calculated without the actual FOC, however, then the other stakeholders, such as the shipbuilding company and Class, or others who don't have the measured FOC, can check how efficiently their ships are operating compared to other ships. In this study, we propose a method to estimate the EEOI without requiring the actual FOC. The Automatic Identification System (AIS) data, ship static data, and environment data that can be publicly obtained are used to calculate the EEOI. Since the public data are of large capacity, big data technologies, specifically Hadoop and Spark, are used. We verify the proposed method using actual data, and the result shows that the proposed method can estimate EEOI from public data without actual FOC.

Prediction of Barge Ship Roll Response Amplitude Operator Using Machine Learning Techniques

  • Lim, Jae Hwan;Jo, Hyo Jae
    • 한국해양공학회지
    • /
    • 제34권3호
    • /
    • pp.167-179
    • /
    • 2020
  • Recently, the increasing importance of artificial intelligence (AI) technology has led to its increased use in various fields in the shipbuilding and marine industries. For example, typical scenarios for AI include production management, analyses of ships on a voyage, and motion prediction. Therefore, this study was conducted to predict a response amplitude operator (RAO) through AI technology. It used a neural network based on one of the types of AI methods. The data used in the neural network consisted of the properties of the vessel and RAO values, based on simulating the in-house code. The learning model consisted of an input layer, hidden layer, and output layer. The input layer comprised eight neurons, the hidden layer comprised the variables, and the output layer comprised 20 neurons. The RAO predicted with the neural network and an RAO created with the in-house code were compared. The accuracy was assessed and reviewed based on the root mean square error (RMSE), standard deviation (SD), random number change, correlation coefficient, and scatter plot. Finally, the optimal model was selected, and the conclusion was drawn. The ultimate goals of this study were to reduce the difficulty in the modeling work required to obtain the RAO, to reduce the difficulty in using commercial tools, and to enable an assessment of the stability of medium/small vessels in waves.

Perception of Ship's Movement in Docking Maneuvering using Ship-Handling Simulator

  • Arai, Yasuo;Minamiya, Taro;Okuda, Shigeyuki
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 Asia Navigation Conference
    • /
    • pp.3-10
    • /
    • 2006
  • Recently it is coming to be hish reality on visual system in ship-handling simulator depending on the technical development of 3D computer graphics. Even with high reality, it is possible that visual information presented seafarers through screen or display is not equivalent to the real world. In docking maneuvering, visual targets or obstructs are sighted close to ship's operator or within few hundred meters, so it might be possible to affect visual information such as the difference between both eyes' and single eye's visual sight. Because it is not possible to perceive of very slow ship's movement by visual in case of very large vessels, so the Doppler Docking SONAR and/or Docking Speed and Distance Measurement Equipment were developed and applied for safety docking maneuvering. By the way, the simulator training includes the ship's maneuvering training in docking, but in Ship-handling Simulator and also onboard, there are some limitations of perception of ship's movement with visual information. In this paper, perception of ship's movement with visual system in Ship-handling Simulator and competition of performances of visual systems that are conventional screen type with Fixed Eye-point system and Mission Simulator. We got some conclusions not only on the effectiveness for visual system but also on the human behavior in docking maneuver.

  • PDF

A Proposal on the Marine Traffic Supporting System in VTS area

  • Lee, Hyong-Ki;Chang, Seong-Rok;Jeong, Gi-Nam;Park, Young-Soo
    • 한국항해항만학회지
    • /
    • 제34권9호
    • /
    • pp.693-698
    • /
    • 2010
  • In port and its approach channel, traffic accidents such as collision, aground, minor collision have reached about 77% of total marine casualty in the area. In this paper, an attempt to enhance the safe navigation was proposed by offering marine traffic supporting system which helps VTS operator assist vessel effectively with the quantitative assessment on difficulty of each vessel. The system collects navigation data from onboard AIS, assesses the data in assessment mode to analyze the navigation difficulties of each vessel and displays the degree of danger of each vessel on the ECDIS in real-time to decide the intervention time or order of priority for VTS operator. The effectiveness of the system was verified by the VTS operators in Korea.

선박직원법상 소형선박조종사의 승무기준 개선에 관한 연구 (A Study on the Improvement of Manning Standards of Small Vessel Operator in the Ship Officer's Act)

  • 김동근;전영우
    • 해양환경안전학회지
    • /
    • 제12권4호
    • /
    • pp.307-312
    • /
    • 2006
  • 최근 들어 선박직원법상 승무기준의 개정의 필요성에 대한 강력한 주장이 수산업계에서 제기되었다. 수산업계에서는 승무기준완화 입장을 유지하는 반면 노동계와 해기사협회 및 통신사협회는 현행유지 내지 기준의 강화를 주장하였다. 본 연구는 선박안전운항을 확보하기 위하여 선박직원법상 소형선박조종사 승무기준의 타당성과 그 개선 방안을 연구 제시하고자 한다.

  • PDF

조선환경스트레스 모델을 이용한 편도항로 만곡부에서의 선박조종 난이도 평가에 관한 연구 (A Study on Ship-handling Difficulty in Bend Channels)

  • 나상각;문채식;윤명오;금종수;노창균
    • 해양환경안전학회지
    • /
    • 제9권1호
    • /
    • pp.57-63
    • /
    • 2003
  • 해상교통시스템은 선박, 조선자, 선박과 조선자를 둘러싼 환경으로 구성되어 있다. 항행환경은 조선환경, 교통환경, 정보사회환경으로 분류하며, 항로설계는 조선환경의 일부를 설정하는 것이다. 본 연구는 항만설비 중 항로설계기준의 적정성을 확인하기 위하여 조선자의 입장에서 직선항로와 항로만곡부에서의 조선부담감을 정량적으로 평가한 것이다. 환경스트레스모델을 이용하여 대상항로에서 항로폭, 선박전장, 선속 등의 요소를 고려하여 선박조종 난이도를 평가하고, 그 상관관계를 구하였으며 조선부담의 경감방안을 제시하였다.

  • PDF

A Study on Ecological Interface Design for Navy Ship's Radar Display

  • Park, Young-Hwan;Myung, Ro-Hae
    • 대한인간공학회지
    • /
    • 제31권2호
    • /
    • pp.353-362
    • /
    • 2012
  • Objective: The aim of this study is developing the navigation radar display of navy ship with ecological interface design (EID) framework. Background: Navy ship radar operator must perform navigation support tasks by monitoring the complex and diverse information presented on the radar display. Current radar display is limited in effective navigation aid and response to an unusual state immediately. It is necessary to develop an effective radar display. Method: Ten navy radar operators performed a series of trials in a low-fidelity radar simulation in which they attempted to solve the problems of current navigation situation. Results: The result demonstrated that the ecological interface's performance was better than the existing radar display on performance time and subjective mental workload. Conclusion: This study expand EID study field to navy ship radar display and confirm ecological display is better than existing radar display in performance time, subjective mental work load. Application: The result of this study may help to improve navy ship navigation radar display currently in use.

불균일류중(不均一流中)에서의 선박조종운동(船舶操縱運動)의 계산(計算) (Calculation on Manoeuvring Motions of Ships in Non-uniform Flow)

  • 손경호;윤수원
    • 대한조선학회지
    • /
    • 제22권2호
    • /
    • pp.1-11
    • /
    • 1985
  • Generally, the non-uniform flow with varying speed distribution ca be formed near narrow straits or waterways. One of the most dynamic modes of capsizing can occur as a result of manoeuvring of ships in non-uniform flow. This paper covers the investigation into the factors affecting the likelihood of server ship motions in non-uniform flow. Digital simulation of manoeuvring is carried out in order to predict conditions which could lead to serve ship motions in non-uniform flows. Hydrodynamic force derivatives of a container ship are used. Finally, possible conditions of severe ship motions are suggested and guidelines for reducing the liability to capsize are given both for the ship operator and the naval architect.

  • PDF

선박운항자 의식 기반 충돌 위험도 예측 모듈 개발에 관한 연구 (A Basic Study on Prediction Module Development of Collision Risk based on Ship's Operator's Consciousness)

  • 박영수;박상원;조익순
    • 한국항해항만학회지
    • /
    • 제39권3호
    • /
    • pp.199-207
    • /
    • 2015
  • 우리나라 항구 주변에는 입 출항하는 선박으로 인하여 해상교통흐름이 복잡하다. 이러한 선박통항의 안전과 효율성을 증진하기 위해 우리나라에서는 해상교통관제 서비스를 시행하고 있다. 24시간 쉴 틈이 없는 해상교통 관제사들의 노력에도 불구하고 관제구역 내에서의 충돌사고는 지속적으로 발생하고 있으며, 위험 상황이 약 20분에 1회씩 발생하고 있는 것으로 분석되어 그 위험성은 크다고 할 수 있다. 이러한 사고는 선박운항 및 해상교통관제 정보 제공 시 충돌 위험에 대한 안전 기준을 적시에 제공함으로써 사고를 감소시킬 수 있을 것으로 조사되었다. 이에 본 연구는 선박의 충돌위험도를 선박운항자의 관점에서 평가할 수 있는 모델을 이용하여 그 위험을 선박의 속도, 침로 등을 조정하여 각 교통 상황별 충돌 위험도를 사전에 예측 할 수 있는 위험도 예측 모듈을 개발하였다. 이 모듈을 이용하여 선박운항자 및 관제사는 복잡한 교통 상황에서 위험요소를 쉽게 식별 할 수 있어, 가까운 장래의 위험 정도의 변화를 선박침로 및 속력변경 등을 제시할 수 있는 등의 적절한 피항조치를 취할 수 있다. 이 모듈의 효용성을 검증하기 위해 부산항 해역을 대상으로 조우 상황별 위험도를 예측 후 구체적인 침로 및 속력 변경에 따른 위험도 변화를 식별할 수 있는 것으로 확인되었다.