• Title/Summary/Keyword: Ship manoeuvring

Search Result 84, Processing Time 0.019 seconds

A Study on the Manoeuvrability of KVLCC2 in Shallow Water by Free Running Model Test (자유항주모형시험을 이용한 KVLCC2 선형의 천수영역에서의 조종성능에 관한 연구)

  • Yun, Kunhang;Yeo, Dong Jin;Park, Byoungjae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.494-500
    • /
    • 2015
  • It has been reported that a ship sailing in shallow water possesses better straight-line stability due to the change of fluid flow around the ship. This tendency affects manoeuvring characteristics of the ship. To investigate this phenomenon, indoor free running model test(FRMT) on KVLCC2 was carried out in three water depth conditions(H/T = 1.2, 1.5 & 2.0). Turning circle tests(± 35° ) and zigzag tests(± 20° /5° and ± 20° /10° ) were conducted with newly developed indoor FRMT system, and the manoeuvring results were compared with test results from other institutes. As the water depth decreased, the yaw rate of the ship decreased, and the distances of circular trajectories at the same heading angle increased in the turning circle tests. The first overshoot angles of the zigzag tests decreased. From both tests, the time for course change increased as the water depth decreased. These manoeuvring characteristics show that KVLCC2 in shallow water becomes more stable in terms of straight-line stability.

Analysis of Manoeuvrability of a Ship in Waves by 3-Dimensional Panel Method (3차원 파넬방법에 의한 파중 선박의 조종성능 해석)

  • S.P. Ann;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.82-98
    • /
    • 1994
  • A mathematical model for the hydrodynamic forces acting on the ship manoeuvring in waves is formulated and a numerical method for the problem is developed. The motion of a ship, which manoeuvres in waves, may be thought to have two components; one is a high frequency component due to encounter waves, and the other is a low frequency component due to manoeuvring motion. So the method of two time scale expansion is used to divide linear boundary value problem. For the effects of waves on the manoeuvring motion of a ship, only the second order drift forces are considered. The integral equation for the velocity potential is solved by 3 dimensional panel method and hydrodynamic forces are calculated by direct integral method.

  • PDF

A Study on Estimation Technique of Manoeuvring Difficulty Using the Ship Manoeuvre Simulator for Berthing/Deberthing (선박 접이안 조종 시뮬레이터를 이용한 조종위험도 평가 기법에 관한 연구)

  • Yang Seung-Yeul;Sohn Kyoung-Ho;Lee Hee-Yong;Ha Mun-Keun;Kim Hyun-Soo;Lee JIn-Ho;Im Nam-Kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.81-87
    • /
    • 2004
  • It includes the considerable concentration and dangerousness as the peculiar work of a pilot and dock-master to berthing/deberthing the big object as for the ship within the port or the ship yard. A tug utilization is getting increased in this berthing/deberthing work and the own ship is affected a lot by external force due to moving with low advance speed. In this study, we constructed the 2 dimension virtual system which can conduct the berthing/deberthing manoeuvring work by using mainly tugs in a external force, particularly strong wind. Also, propose objective standard that could estimate the degree of manoeuvring difficulty, and conducted simulation experiment for this. we analyzed correlations between the subjective estimation which is described numerically the decreased dangerousness and the objective index which is related to the main parameter regarding manoeuvring by using this simulator from the result of conducting simulation experiment. And then we discussed the estimation technique of manoeuvring difficulty.

  • PDF

Assessment of Safe Navigation Including the Effect of Ship-Ship Interaction in Restricted Waterways (제한수역에서 두선박간의 상호간섭력을 포함한 안전항해의 평가)

  • Lee, Chun-Ki
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.5-10
    • /
    • 2003
  • This paper is mainly concerned with the assessment of safe navigation between ships moving each other in restricted waterways. The manoeuvring simulation was conducted parametrically to propose an appropriate sage speed and distance, which is required to avoid sea accident under the different conditions, such as ship-velocity ratios, ship-length ratios, separation and stagger between ships. The manoeuvring characteristics based on this investigation will be very useful for keeping the safety of navigation from the practical point of ships design and traffic control in confined water.

  • PDF

Hydrodynamic Forces and Manoeuvring Characteristics of Ships at Low Advance Speed (저속시 선체에 작용하는 조종유체력 및 조종성능에 관한 연구)

  • Sohn, Kyoung-Ho
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.4
    • /
    • pp.27-39
    • /
    • 1991
  • One practical method has already been proposed for predicting the characteristics of ship manoeuvring motions at relatively high advance speed [19]. Howeverf, this method can hardly be applied to motions of ships in starting, stopping, backing and slow steaming conditions, even though such extensive motions are of vital importance from a safety point of view particularly in harbour areas. The method presented here aims at predicting the characteristics of ship manoeuvring at low advance speed, which covers starting, stopping, backing and slow steaming conditions. The force mathematical models at large angles of incidence to the hull as well as under the wide range of propeller operations are formulated. Simulations of various manoeuvres at low advance speed are carried out for two types of merchant ship, I.e. a LNGC and a VLCC. Comparisons between simulations and corresponding full-scale measurements [10], [15] or free-running model tests [6],[10] provide a first verification of the proposed mathematical models.

  • PDF

Assessment of Safe Navigation Including the Effect of Ship-Ship Interaction in Restricted Waterways

  • Lee, Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.247-252
    • /
    • 2003
  • This paper is mainly concerned with the assessment of safe navigation between ships moving each other in restricted waterways. The numerical simulation of manoeuvring motion was conducted parametrically to propose an appropriate safe speed and distance, which is required to avoid sea accident under the different conditions, such as ship-velocity ratios, ship-length ratios, separation and stagger between ships. As for the calculation parameters, the ratios of velocity difference between two ships were considered as 0.6, 1.2, 1.5 and the ones of ship-length difference were regarded were regarded as 0.5, 1.0, 1.18. From the inspection of this investigation, it indicates the following result. Firstly, the separation between ships is more needed for the small vessel, compared to the large vessel. Secondly, the lateral distance between ships is necessarily required for the velocity ration of 1.2, compared to the cases of 0.6 and 1.5. The manoeuvring characteristics based on this investigation will be very useful for keeping the safety of navigation from the practical point of ships design and traffic control in confined water.

An Experimental Study on the Manoeuvrability of KCS with Different Scale Ratios by Free Running Model Test (자유항주모형시험을 이용한 KCS 선형의 축척비별 조종성능에 관한 연구)

  • Yun, Kunhang;Choi, Hujae;Kim, Dong Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.415-423
    • /
    • 2021
  • There have been many experimental studies on the manoeuvrability of KRISO Container Ship (KCS). However, the scale ratio of the model ship and the test procedure for each institute are slightly different, so direct comparison for the data is technically difficult to perform. This paper presents the manoeuvrability of the ship with different scale ratios: 1/65.8, 1/42.0, and 1/31.6 in model scale. KRISO conducted Free Running Model Tests (FRMT): 35° turning circle tests and 20/20(10/10) zigzag manoeuvring tests. The test results indicated that advance and tactical diameter in turning circle tests were similar, and overshoot angles in two zigzag manoeuvring tests increased as the model ship size increased. In addition, a basic concept for the FRMT method with an auxiliary X-thrust device was proposed so that the scale effect could be considered in model ship tests.

Control System for Ship Collision Avoidance considering the Effect of Wind and Ship's Manoeuvrability

  • Im, Nam-Kyun;Lee, Seung-Keon;Hwang, Seong-Joon
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2010
  • The studies on automatic ship collision avoidance system, which have been carried out in the last 10 years, are facing on new situation due to newly developed high technology such as computer and other information system. It was almost impossible to make it used in real navigation field 3-4 years ago because of the absence of any tool to give other ship's information, however recently developed technology suggests new possibility. This study is carried out to develop the automatic ship collision avoidance support system which considers ship's manoeuvrability into it's collision avoidance algorithm. One of the important part in ship collision avoidance system is collision decision module which can calculate collision risk with other ships and act properly to avoid the situation. Many of previous researches are using present ship's dynamic data such as present speed, position and course to calculate collision risk. However when a ship commences avoidance action, the real situation is quite different with one that has been estimated by the ship's initial data due to the ship's manoeuvring characteristic. Therefore it is better to take into account ship's manoeuvring characteristic from the stage of collision decision in ship collision avoidance system. In this study, these effects are included in the developed system. The proposed system are verified its usefulness in numerical simulation environments.

A Study on Development of PC-based Ship Handling Simulator (PC를 이용한 선박 조종 시뮬레이터의 개발에 관한 연구)

  • 손경호;이성욱
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.4 no.2
    • /
    • pp.25-33
    • /
    • 1998
  • This paper deals with PC-based ship handling simulator, which is now widely utilized not only for total assessment of safety in harbour area but also for training purpose. The suitable mathematical model for low advance speed manoeuvre is treated with the effects of current, wind, wave, tug force and water depth. We adopt 3 dimensional graphic technique for perspective representation of relative ship motion. Some graphical panels on the screen are devised for data input/output or ship manoeuvring information. We show the real time simulation of berthing menoeuvre applied to Pusan harbour as an example.

  • PDF

A Study on Yaw-checking and Course-keeping Ability of Directionally Unstable Ships

  • Sohn, Kyoung-Ho;Yang, Seung-Yeul;Lee, Dong-Sub;Bae, Jun-Young
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.631-638
    • /
    • 2003
  • Yaw-checking and course-keeping ability in IMO's ship manoeuvrability standards are reviewed from the viewpoint of safe navigation. Three kinds of virtual series-ships, which have different course instability, are taken as test models. The numerical simulation on Z-test is carried out in order to examine the correlation between known manoeuvrability in spiral characteristics and various kinds of overshoot angle. Then simulator experiments are executed with series-ships in a curved, narrow waterway by six operators(five active pilots and one ex-captain) in order to examine the correlation between known manoeuvrability and degree of manoeuvring difficulty. IMC criteria for yaw-checking and course-keeping ability are discussed and revised criteria are proposed.