• Title/Summary/Keyword: Ship control

Search Result 1,287, Processing Time 0.025 seconds

Real-time Detection Technique of the Target in a Berth for Automatic Ship Berthing (선박 자동접안을 위한 정박지 목표물의 실시간 검출법)

  • Choi, Yong-Woon;;Kim, Young-Bok;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.431-437
    • /
    • 2006
  • In this paper vector code correlation(VCC) method and an algorithm to promote the image-processing performance in building an effective measurement system using cameras are described far automatically berthing and controlling the ship equipped with side-thrusters. In order to realize automatic ship berthing, it is indispensable that the berthing assistant system on the ship should continuously trace a target in the berth to measure the distance to the target and the ship attitude, such that we can make the ship move to the specified location. The considered system is made up of 4 apparatuses compounded from a CCD camera, a camera direction controller, a popular PC with a built-in image processing board and a signal conversion unit connected to parallel port of the PC. The object of this paper is to reduce the image-processing time so that the berthing system is able to ensure the safety schedule against risks during approaching to the berth. It could be achieved by composing the vector code image to utilize the gradient of an approximated plane found with the brightness of pixels forming a certain region in an image and verifying the effectiveness on a commonly used PC. From experimental results, it is clear that the proposed method can be applied to the measurement system for automatic ship berthing and has the image-processing time of fourfold as compared with the typical template matching method.

Sliding Mode Control of a Cargo System Model Using ER Valve-Actuators (ER 밸브 작동기를 이용한 하역시스템 모델의 슬라이딩모드 제어)

  • Choe, Seung-Bok;Kim, Hyeong-Seok;Jeong, Dal-Do;Seong, Geum-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1982-1992
    • /
    • 1999
  • This paper presents a novel concept of cargo handling system adapted for a sea port subjected to severe time-varying tide. The proposed system can perform loading or unloading by using a sort of hydraulic elevator associated with real-time position control. In order to achieve a proof-of-concept, a small-sized laboratory model of the cargo handling system is designed and built. The model consists of three principal components container palette transfer (CPT) car, platform with lifting columns, and cargo ship. The platform activated by electro-rheological (ER) valve-cylinders is actively controlled to track the position of the cargo ship subjected to be varied due to the time-varying tide and wave motion. Following the derivation of the dynamic model for the platform and cargo ship motions, an appropriate control scheme is formulated and implemented. The location of the CPT car is sensed by a set of photoelectric switches and controlled via sequence controller. On the other hand, a sliding mode controller (SMC) is adopted as the position controller for the platform. Both simulated and measured control results are presented to demonstrate the effectiveness of the proposed cargo system.

Control Design of the Brushless Doubly-Fed Machines for Stand-Alone VSCF Ship Shaft Generator Systems

  • Liu, Yi;Ai, Wu;Chen, Bing;Chen, Ke
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.259-267
    • /
    • 2016
  • This paper presents a stand-alone variable speed constant frequency (VSCF) ship shaft generator system based on a brushless doubly-fed machine (BDFM). In this system, the output voltage amplitude and frequency of the BDFM are kept constant under a variable rotor speed and load by utilizing a well-designed current vector controller to regulate the control winding (CW) current. The control scheme is proposed, and the hardware design for the control system is developed. The proposed generator system is tested on a 325 TEU container vessel, and the test results show the good dynamic performance of the CW current vector controller and the whole control system. A harmonic analysis of the output voltage and a fuel consumption analysis of the generator system are also implemented. Finally, the total efficiency of the generator system is presented under different rotor speeds and load conditions.

Automatic Ship Control System to According for Fog Conditions (안개 상태에 따른 선박 자동제어 장치)

  • Lee, Kyeong-Min;Kim, Shin-Hoo;Kim, Kab-Ki;Park, Sung-Hyeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.754-758
    • /
    • 2017
  • In this paper, we designed and manufactured an automatic control system to minimize or avoid damage by automatically controlling ship engines in case of fog to allow for safer operation. This automatic power control system uses ATmega128 and an RPM detection circuit to measure RPM changes by artificially generating fog in the fog generator. For this purpose, we have created a complete schematic and applied our source code to an ATmega128 for PWM control using a Hall sensor motor. In future, an experiment and safety evaluation using this automatic power control system with an actual ship will be prepared.

Adaptive Sliding Mode Control Synthesis of Maritime Autonomous Surface Ship

  • Lee, Sang-Do;Xu, Xiao;Kim, Hwan-Seong;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.306-312
    • /
    • 2019
  • This paper investigates to design a controller for maritime autonomous surface ship (MASS) by means of adaptive super-twisting algorithm (ASTA). A input-out feedback linearization method is considered for multi-input multi-output (MIMO) system. Sliding Mode Controller (SMC) is suitable for MASS subject to ocean environments due to its robustness against parameter uncertainties and disturbances. However, conventional SMC has inherent disadvantages so-called, chattering phenomenon, which resulted from the high frequency of switching terms. Chattering may cause harmful failure of actuators such as propeller and rudder of ships. The main contribution of this work is to address an appropriate controller for MASS, simultaneously controls surge and yaw motion in severe step inputs. Proposed control mechanism well provides convergence bewildered by external disturbances in the middle of steady-state responses as well as chattering attenuation. Also, the adaptive algorithm is contributed to reducing non-overestimated value of control gains. Control inputs of surge and yaw motion are displayed by smoother curves without excessive control activities of actuators. Finally, no overshoot can be seen in transient responses.

Decoupling Control Design for Variable Speed Refrigeration System of a Ship

  • Hua, Li;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.7
    • /
    • pp.808-815
    • /
    • 2006
  • In this paper, we suggest decoupling control method based on general PI control law to control variable speed refrigeration system of the ship effectively. In the variable speed refrigeration system, the capacity and the superheat are controlled by inverters and electronic expansion valves respectively for saving energy and improving cost performance. Thus, we propose decoupling model to eliminate the interfering loop between capacity and superheat at first. Next, we design PI controller to control capacity and superheat independently and simultaneously. Finally the control performance was investigated through some experiments. The experimental results show that the PI control design can obtain good control performance under the adjustable control reference and thermal load variation.

SPACE-BASED OCEAN SURVEILLANCE AND SUPPORT CAPABILITY

  • Yang Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.253-256
    • /
    • 2005
  • The use of satellite remote sensing in maritime safety and security can aid in the detection of illegal fishing activities and provide more efficient use of limited aircraft or patrol craft resources. In the area of vessel traffic monitoring for commercial vessels, Vessel Traffic Service (VTS) which use the ground-based radar system have some difficulties in detecting moving ships due to the limited detection range. A virtual vessel traffic control system is introduced to contribute to prevent a marine accident such as collision and stranding from happening. Existing VTS has its limit. The virtual vessel traffic control system consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress based on the satellite data, remotely sensed data. And it could be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If environmental stress values are simulated for the ship information derived from satellite data, proper actions can be taken to prevent accidents. Since optical sensor has a high spatial resolution, JERS satellite data are used to track ships and extract their information. We present an algorithm of automatic identification of ship size and velocity. This paper lastly introduce the field testing results of ship detection by RADARSAT SAR imagery, and propose a new approach for a Vessel Monitoring System(VMS), including VTS, and SAR combination service.

  • PDF

A Study on Targer Factor Value of Port State Control Inspection (항만국통제 Target Factor 선정에 관한 연구)

  • Jang, Woon-Jae;Cho, Ik-Sun;Choi, Ki-Jung;Choi, Kyong-Il;Kim, Kyung-Bok;Keum, Jong-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2009.06a
    • /
    • pp.71-75
    • /
    • 2009
  • This paper proposes an evaluation to Target Factor Values of Port State Control Inspections(PSCITFV) using AHP because PSCITFV is very simple methode, This AHP is the more rational and objective methode than existing TFV methode. AHP is relative measurement., but, weights should be re-calculation whenever alternative plan add. To this solve, therefore, this paper, used an absolute measurement and involved an marine casualty factor in PSCITFV, that IMO go ahead with it., Also, accomplished with evaluation some ships for the practice.

  • PDF

A Numerical Study for Improvement of the Speed-performance of a Ship with Flow Control Flat Plate (유동제어평판을 가진 선박의 속도성능 향상에 관한 수치적 연구)

  • Park, Dong-Woo;Choi, Hee-Jong;Yoon, Hyun-Sik;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.268-278
    • /
    • 2009
  • The present study focused on evaluation for the performance of the Flow Control Flat Plate (FCFP) attached in the stern side of the ship. The important function of this FCFP is to enhance the resistance performance through the decrease of stern sinkage and the propulsive performance by the adjustment of inflow velocities in the propeller plane. Two different hull forms were considered to identify the effects of the FCFP. The attachment position, the angle and the size of the FCFP were studied in this numerical simulation. In this paper, the roles of the FCFP were intended to analyze fully through the numerical interpretation.

A Study on the Control of the Slew Motion of a Single Point Moored Ship (일점계류된 선박의 불안정 거동 방지에 관한 연구)

  • Lee, Seung-Keon;Kang, Dong-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.193-198
    • /
    • 2003
  • The slew motion of a single point moored ship by the external forces is considered to control itself. The maneuvering equations of motion are derived to express the motion of a ship. The wind forces and the wave forces are considered as the external forces of the single point moored ship in the simulation. The wave forces in the time domain analysis are generated from the frequency transfer function calculated by 3-D source distribution method. The wind forces are used the results from OCIMF(1994). To control the slew motion, the bow thruster and the bridle anchoring with 2nd anchor are used in the numerical simulation.