• Title/Summary/Keyword: Ship bridge

Search Result 209, Processing Time 0.024 seconds

Study on the Influence of Stray current Between Sacrificial Anode Cathodic Protection and Impressed Current Cathodic Protection in Marine Environment

  • Jeong, Jin-A;Kim, Ki-Joon
    • Corrosion Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.77-81
    • /
    • 2012
  • Cathodic protection(CP) is widely used as a means of protecting corrosion for not only marine structures like ship hulls and offshore drilling facilities, but also underground structures like buried pipelines and oil storage tanks. The principle of CP is that the anodic dissolution of metal can be protected by supplying electrons to the cathode metal. When unprotected structures are nearby to CP systems, interference problems between unprotected and protected structures may be happened. The stray current interference can accelerate the corrosion of nearby structures. So far many efforts have been made to reduce the interference in the electric railway systems adjacent to the underground metal structures like buried pipelines and gas/oil tanks. During recent few decades the protection technologies against stray current induced corrosion have been significantly improved and a number of techniques have been developed. However, there is very limited information an marine environments. Some complex harbor structures are protected by two cathodic protection systems, i.e. sacrificial anode cathodic protection(SACP) and impressed current cathodic protection(ICCP). In this case, when the protection current from sacrificial anodes returns to the cathode through electrolyte, it passes through nearby other low resistance metal structures. In many cases the stray current of ICCP systems influences the function of SACP. In this study, the risk of stray current from the SACP system to adjacent reinforced concrete structures has been verified through laboratory experiments. Concrete and steel pile structures modeled a part of bridge have been investigated in terms of CP potential and current between the two. The variation of stray current according to the magnitude of ICCP/SACP has been studied to mitigate it and to suggest the proper protection criteria.

Ultimate Strength Prediction Formula Estimation of Aluminium Alloy Plate Girders Subjected to Patch Loading (패치로딩을 받는 알루미늄 합금 플레이트 거더의 최종강도 예측식 추정)

  • Oh, Young-Cheol;Seo, Kwang-Cheol;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.543-551
    • /
    • 2015
  • In this paper, Used on the bridge and ship, investigate the physical relationship of aluminium plate girders(A6082-T6) considering the marine environment. Plate girder will experience the patch loading such as moving load, surcharge in the product life cycle. The ultimate strength of aluminum plate girders subjected to these loads applied multiple numerical model and performed the elasto-plastic large deflection series analysis and was proposed the predicted formula for regression analysis. The predicted formula was shown by the relationship of ultimate strength and slenderness. If the slenderness is low(0-2.3), it causes a 9 % error, and If the slenderness is higher(2.3-4.0), it causes a 1-2 % error. Therefore, the propriety of proposed prediction formular was found to be assess rationally.

Study on a Waypoint Tracking Algorithm for Unmanned Surface Vehicle (USV) (무인수상선을 위한 경유점 추적 제어 알고리즘에 관한 연구)

  • Son, Nam-Sun;Yoon, Hyeon-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • A waypoint tracking algorithm(WTA) is designed for Unmanned Surface Vehicle(USV) in which water-jet system is installed for propulsion To control the heading of USV for waypoint tracking, the steering nozzle of water-jet need, to be controlled. Firstly, target heading is calculated by using the position information of waypoints input from the land control center. Secondly, the command for the steering nozzle of water-jet is calculated in real time by using the heading and the rate-of-turn( ROT) from magnetic compass, In this study, in order to consider the drift angle due to external disturbance such as wind and wave, the course of ground( COG) can be used instead of heading at higher speed than a certain value, To test the performance of newly-designed WTA, the tests were carried out in actual sea area near Gwang-an bridge of Busan. In this paper, the sea trial test results from WTA are analyzed and compared with those from manual control and those from commercial controller.

Case Study on the Development of STEAM Instruction Material for Mathematics Subject-Based Advanced Technology and ICT Teaching Tools (초등수학 교과 기반 첨단 기술 및 ICT 교구 활용형 융합교육 자료 개발에 대한 사례 연구)

  • Lee, Jong-hak
    • Journal of the Korean School Mathematics Society
    • /
    • v.25 no.4
    • /
    • pp.333-352
    • /
    • 2022
  • This study is aimed at developing the STEAM instruction materials for mathematics subject-based advanced technology and ICT teaching tools. In order to develop the STEAM materials, a PDI model in which the implementation and evaluation steps were simplified to Improvement was used. The developed STEAM materials were revised and supplemented by a group of experts. The subject of the STEAM class material developed in this study is 『Graph! The bridge that connects the past, present and future』 , 『You are the same but different!』 , 『Creating a virtual reality three-dimensional space together』 , 『And making interesting figures』 and 『Cover the roof of the turtle ship!』 . As a suggestion based on the results of this development study, various STEAM education materials should be developed and shared so that STEAM education can be performed in the elementary education field. And for the spread and settlement of STEAM education, the cultivation and expansion of STEAM education capabilities of on-site elementary school teachers or pre-service teachers will be an absolute prerequisite. And this suggests the need for a continuous and long-term approach to follow-up research on STEAM education.

A Study on the Application for Domestic Remote Operator Licensing System for Maritime Autonomous Surface Ships Using the AHP (AHP를 활용한 자율운항선박 원격운영자의 국내 면허체계 적용방안에 관한 연구)

  • HanKyu PARK;MinJae HA
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.628-638
    • /
    • 2023
  • Maritime Autonomous Surface ships(MASS) are gradually gaining importance. Until fully autonomous ships are developed, they will likely be controlled by remote operators who are based in a Remote Operations Center. However, there is currently no internationally or domestically established licensing for them. This issue can potentially pose a risk to navigation safety due to operations being handled by unqualified remote operators. We conducted a literature review and proposed criteria for the adoption of a licensing system for remote operators. We have futher offered alternatives to integrate this license into the existing officer licensing system, and analyzed them using Analytic Hierarchy Process(AHP). Subsequently,, theprimary need to enact legislation for remote operators is observed. The most preferred approach is to include the occupation of a remote operator in the Ship Officer Act, Article 4: Occupational Categories and Class of Licenses. Therefore, it would be logical for the organizational structure of the Remote Operation Center to mirror the traditional Bridge Resource Management. This study will contribute to the efficient training of remote operators and the safe navigation of autonomous ships with a focus on human resource management.

Practical Aspects of Microwave Surface Velocity Meter Applied to Measurements of Stream Discharges (전자파 표면 유속계의 하천 유량 측정에 관한 실용성)

  • Lee, Sang-Ho;Kim, U-Gu;Kim, Yeong-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.671-678
    • /
    • 1997
  • Water surface velocity meters with microwave were applied to stream discharge measurements and its practical aspects were evaluted. The rating of the surface velocity meters was performed through a carriage and a water tank for the ship model test. It gave5.5% or less errors of average measured velocities under the vertical tilt ang1e of 20$^{\circ}$, 35$^{\circ}$, or 45$^{\circ}$ . A surface velocity meter was used to measure flood velocities at Yoju bridge from 8:00 a.m. to 10:00 a.m. on August 26, 1995. The results showed that surface velocities ranged from 2 to 4 m/s. With the measured surface velocities multiplied by 0.85, the discharge was computed as 10,500 m$^3$/s. It differed $\pm$2% or less from the value of a stage-discharge curve and that of an unsteady flow simulation. Although the measured data are used sparsely per 40 or 60 meters, the computed discharges do not give large variation. Stream discharge measurements were also performed under the normal condition without floods. With the known values of Taechong Dam releases. the depth averaging factors of velocity were calculated by 0.83~0.87. Although there are errors from wind action and inherent ones in the velocity meters, the research showed that surface velocity meters could be an simple and practical alternative for flood discharge measurements.

  • PDF

Finding Hazard Factors by New Risks on Maritime Safety in Korea

  • Park, Deuk-Jin;Park, Seong-Bug;Yang, Hyeong-Sun;Yim, Jeong-Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.3
    • /
    • pp.278-285
    • /
    • 2016
  • The key features of maritime accidents are the change of their attributes by new risks from time to time. To prevent maritime accidents in Korea, the impacts by new risks on domestic safety environments should be identified or predicted. The purpose of this paper is to find the hazard factors by new risks on maritime safety in Korea. The meaning of new risks is the elements of accident hazard which is compiled from new or rare or unprecedented events in the worldwide maritime transportations. The problems of new risks are the lacks of optimum countermeasures to mitigate accident risks. Using the questionnaires with 152 event scenarios classified by 20 accident causes, the hazard identification and risk analysis of new risks was performed based on the Formal Safety Assessment (FSA) by IMO. A total of 22 Influence Diagrams, which is to depict the transit flows between accident causes to consequences, is used in the construction of 152 event scenarios. A total of 20 accidents causes is the same contents as the causation factors represented in Statistical Year Book for Maritime Accidents of Korean Maritime Safety Tribunals. After defining the evaluation equations to the response results of questionnaires by 46 experts, the work for risk analysis is carried out. As results from the analysis of 152 scenarios, it is known that the root cause to affect on maritime safety in Korea is the pressure of business competition and it led to the lacks of well experienced crews, the overload of vessel operations and crew's fatigue. In addition, as results from the analysis of 20 accident causes, the three accident causes are to be candidate as main issues in Korea such as the inadequate preparedness of departure, the neglecting of watch keeping in bridge and the inadequate management of ship operations. All of the results are thought to be as basic hazard factors to safety impediments. It is thus found that the optimum Risk Control Options to remove the hazard factors and to mitigate consequences required are the following two factors: business competition and crewing problems.

The Comparison of Various Turbulence Models of the Flow around a Wall Mounted Square Cylinder (벽면에 부착된 사각 실린더 주변 유동에 대한 난류모델 비교연구)

  • Bae, Jun-Young;Song, Gi-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.419-428
    • /
    • 2020
  • The flow past a wall mounted square cylinder, a typical and basic shape of building, bridge or offshore structure, was simulated using URANS computation through adoption of three turbulence models, namely, the k-ε model, k-ω model, and the v2-f model. It is well known that this flow is naturally unstable due to the Karman vortex shedding and exhibits a complex flow structure in the wake region. The mean flow field including velocity profiles and the dominant frequency of flow oscillation that was from the simulations discussed earlier were compared with the experimental data observed by Wang et al. (2004; 2006). Based on these comparisons it was found that the v2-f model is most accurate for the URANS simulation; moreover, the k-ω model is also acceptable. However, the k-ε model was found to be unsuitable in this case. Therefore, v2-f model is proved to be an excellent choice for the analysis of flow with massive separation. Therefore, it is expected to be used in future by studies aiming to control the flow separation.

Delineation of a fault zone beneath a riverbed by an electrical resistivity survey using a floating streamer cable (스트리머 전기비저항 탐사에 의한 하저 단층 탐지)

  • Kwon Hyoung-Seok;Kim Jung-Ho;Ahn Hee-Yoon;Yoon Jin-Sung;Kim Ki-Seog;Jung Chi-Kwang;Lee Seung-Bok;Uchida Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.50-58
    • /
    • 2005
  • Recently, the imaging of geological structures beneath water-covered areas has been in great demand because of numerous tunnel and bridge construction projects on river or lake sites. An electrical resistivity survey can be effective in such a situation because it provides a subsurface image of faults or weak zones beneath the water layer. Even though conventional resistivity surveys in water-covered areas, in which electrodes are installed on the water bottom, do give high-resolution subsurface images, much time and effort is required to install electrodes. Therefore, an easier and more convenient method is sought to find the strike direction of the main zones of weakness, especially for reconnaissance surveys. In this paper, we investigate the applicability of the streamer resistivity survey method, which uses electrodes in a streamer cable towed by ship or boat, for delineating a fault zone. We do this through numerical experiments with models of water-covered areas. We demonstrate that the fault zone can be imaged, not only by installing electrodes on the water bottom, but also by using floating electrodes, when the depth of water is less than twice the electrode spacing. In addition, we compare the signal-to-noise ratio and resolving power of four kinds of electrode arrays that can be adapted to the streamer resistivity method. Following this numerical study, we carried out both conventional and streamer resistivity surveys for the planned tunnel construction site located at the Han River in Seoul, Korea. To obtain high-resolution resistivity images we used the conventional method, and installed electrodes on the water bottom along the planned route of the tunnel beneath the river. Applying a two-dimensional inversion scheme to the measured data, we found three distinctive low-resistivity anomalies, which we interpreted as associated with fault zones. To determine the strike direction of these three fault zones, we used the quick and convenient streamer resistivity.