• Title/Summary/Keyword: Ship Safety Assessment

Search Result 281, Processing Time 0.028 seconds

A Study on the Development of Time Basis Ship Safety Assessment model for a Novel Ship Design (신선종 설계를 위한 사고 전파시간 기반의 선박안전성평가 모델 개발에 관한 연구)

  • Jo, Min-Chul;Kim, Hwa-Young;Kim, Joo-Hwan;Kang, Hee-Jin
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.37
    • /
    • pp.88-97
    • /
    • 2014
  • 새로운 선박을 설계하거나 기존의 규칙, 규정을 따르지 않는 대체설계를 수행할 경우에는 인명, 환경 및 재산 등과 관련한 선박의 안전성을 평가하고 기존 선박 이상의 안전성을 갖고 있음을 반드시 입증해야 한다. 그러나 기존의 IMO 공식안전성평가 등 기존의 위험도 기반 방법론, 절차 및 도구들은 실제 선박의 설계에 적용하는데 있어 여러 가지 문제점들을 나타내고 있다. 따라서 이러한 문제를 해결하고, 선박설계시 구체적으로 적용할 수 있는 세부적인 방법론을 개발하기 위해 동 연구를 수행하였다.

  • PDF

Preliminary tests of a damaged ship for CFD validation

  • Lee, Sung-Kyun;You, Ji-Myoung;Lee, Hyun-Ho;Lim, Tae-Gu;Rhee, Shin-Hyung;Rhee, Key-Pyo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.172-181
    • /
    • 2012
  • One of the most critical issues in naval architecture these days is the operational safety. Among many factors to be considered for higher safety level requirements, the hull stability in intact and damaged conditions is the first to ensure for both commercial and military vessels. Unlike the intact stability cases, the assessment of the damaged ship stability is very complicated physical phenomena. Therefore it is widely acknowledged that computational fluid dynamics (CFD) methods are one of most feasible approaches. In order to develop better CFD methods for damaged ship stability assessment, it is essential to perform well-designed model tests and to build a database for CFD validation. In the present study, free roll decay tests in calm water with both intact and damaged ships were performed and six degree-of-freedom (6DOF) motion responses of intact ship in regular waves were measured. Through the free roll decay tests, the effects of the flooding water on the roll decay motion of a ship were investigated. Through the model tests in regular waves, the database that provides 6DOF motion responses of intact ship was established.

A Study on the Assessment of Traffic Safety of Ship under Bridge (선박의 교량하 통항 안전성에 관한 연구)

  • 윤명오;김현종;금종수;성유창
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.9 no.2
    • /
    • pp.31-37
    • /
    • 2003
  • In these days, several bridges have been built or under construction over navigational channel in Korea. In these cases there must be careful consideration for the marine safety of vessels to be passed by below the bridge. This paper aims to analyze the factors influencing maritime traffic safety and to figure out ample width of main span of these kinds of bridges through the reference study and FMSS.

  • PDF

Parametric Study for Assessment of Reaction Forces on Ship Docking Supports

  • Ryu, Cheol-Ho;Kim, Sung-Chan;Lee, Jang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.3
    • /
    • pp.290-301
    • /
    • 2013
  • The docking analysis of a global ship structure is requested to evaluate its structural safety against the reaction forces at supports during docking works inside a dry dock. That problem becomes more important recently as the size of ships is getting larger and larger. The docking supports are appropriately arranged in a dock to avoid their excessive reaction forces which primarily cause the structural damages in docking a ship and, up to now, the structural safety has been assessed against the support arrangement by the finite element analysis (FEA) of a global ship structure. However, it is complicated to establish the finite element model of the ship in the current structural design environment of a shipyard and it takes over a month to finish the work. This paper investigates a simple and fast approach to carry out a ship docking analysis by a simplified grillage model and to assign the docking supports position on the model. The grillage analysis was considered from the motivation that only the reaction forces at supports are sufficient to assess their arrangement. Since the simplified grillage model of the ship cannot guarantee its accuracy quantitatively, modeling strategies are proposed to improve the accuracy. In this paper, comparisons between the proposed approach and three-dimensional FEA for typical types of ships show that the results from the present grillage model have reasonably good agreement with the FEA model. Finally, an integrated program developed for docking supports planning and its evaluation by the proposed approach is briefly described.

Case Analysis of Risk Assessment for Steel and Iron Works (제철 사업장 위험성평가 사례 분석)

  • Hong, Sung-Man;Park, Peom;Kim, Kwang-Hyoun;Sun, Su-Bin
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.11a
    • /
    • pp.209-221
    • /
    • 2009
  • In the steel industry, steel is manufactured and processed to produce a variety of steel products. The industry provides fundamental materials to the whole range of industries including car, ship, electric appliance and construction industries, so that it is very important as an infrastructure industry. The steel manufacture process involves aerial work, many danger factors caused by the treatment with hazardous gases including BFG and COG and by high pressure gases including H2, O2, N2 and LPG. It requires the management over the large area because many workers work in a plant. The potential dangers in the steel plant were identified and the effect of the danger assessment was verified through the analysis of the danger assessment for the steel plant. The allowed degree of danger was lowered after the improvement through the danger assessment in the plant where the case studies were conducted, which indicates that the danger assessment is highly effective.

  • PDF

Probability Prediction of Stability of Ship by Risk Based Approach (위험도 기반 접근법에 의한 선박 복원성의 확률 예측)

  • Long, Zhan-Jun;Jeong, Jae-Hun;Moon, Byung-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.2
    • /
    • pp.42-47
    • /
    • 2013
  • Ship stability prediction is very complex in reality. In this paper, risk based approach is applied to predict the probability of a certified ship, which is effected by the forces of sea especially the wave loading. Safety assessment and risk analysis process are also applied for the probabilistic prediction of ship stability. The survival probability of ships encountering with different waves at sea is calculated by the existed statistics data and risk based models. Finally, ship capsizing probability is calculated according to single degree of freedom(SDF) rolling differential equation and basin erosion theory of nonlinear dynamics. Calculation results show that the survival probabilities of ship excited by the forces of the seas, especially in the beam seas status, can be predicted by the risk based method.

A Study on Traffic Safety Assessment at Pyeongtack Port by Ship handling Simulator (선박조종시뮬레이터를 이용한 평택항 통항 안전성 평가)

  • Kim, Se-Won;Gug, Seung-Gi;Kim, Won-Ouk;Park, Yeong-Su;Jo, Keoung-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.85-93
    • /
    • 2005
  • In order to effective transportation of goods & smooth traffic in west sea area, it is a plan to build Pyeongtaek bridge. Basically ship-handling operators have a mental difficulty and hazardous for navigation under bridge which is constructed across on the fairway. Therefore this study aims to propose the traffic safety assessment of navigation under the bridge by using full mission ship-handling simulator and also investigate the bridge design regulations of certain countries on the fairway.

  • PDF

Study on the Stability Estimation Method of Small Fishing Vessels at the Initial Design Step (초기설계 단계에서 소형 어선의 복원성 추정 방안에 관한 연구)

  • Hwe-Woo Kim;Sanghyun Kim;Sun-Woo Lee;Hyogeun Lee;In-Tae Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.863-870
    • /
    • 2023
  • Ship capsize accidents are common in coastal waters, particularly involving small fishing boats. To prevent there overturing accidents in small fishing boats, their stabilities must be assessed at the initial design step. However, the available information during the initial design step is limited, posing challenges in performing a reliable stability evaluation. Therefore, this study presents a plan to estimate the transverse metacenter (GM) of small fishing boats using parameters such as KM, KG, and TRIM that can be determined at the initial design step. Stability was evaluated by comparing GM with the minimum transverse metacenter (GMmin) specified in the standard safety evaluation criteria for fishing boats. To calculate the required trim value for hydrostatic characteristics using K-SHIP, a stability assessment program provided by the Korea Maritime Safety and Transportation Corporation, the initial trim state is estimated based on the ship lines using the commercial CFD program STAR-CCM+. GM is then calculated by assessing the hydrostatic characteristics in relation to the boat lines using K-SHIP. Furthermore, the stability of the fully loaded state is compared by subtrcating GM from GMmin. One constructed ship is designated as the standard ship, and the stability assessment method proposed in this study is applied to evaluate stability and validate its effectiveness. Consequently, the representative line of a 4.99-ton fishing boat and nine modular lines models derived from it were evaluated, ultimately identifying a relatively superior stability.

A Study on the Quantitative Risk Analysis Using CFD for the Fuel Gas Supply System of Gas Fueled Ship (가스추진선박의 가스연료공급시스템에 대한 CFD를 이용한 정량적 위험도 해석에 관한 연구)

  • Kim, Kipyoung;Kim, Daeheon;Lee, Youngho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • LNG has significant advantages in regard to environmental aspects comparing with conventional fuel oil. In fact, it is estimated that NOx and SOx emission can be reduced by about 90% and 100%, respectively in case of using LNG as a fuel. LNG-fuelled ship has been considered to be the best option both from an environmental and an economic point of view. Along with these trends, some major shipyards and Classification Societies have started to carry out the risk-based system design for LNG-fuelled ship such as passenger ship, platform supply vessel and large container vessel etc. However, new conceptual gas fuelled ship has high risk level compared with vessel using traditional crude oil especially in view of gas explosion accident. Therefore safety area where installed fuel gas supply system is required risk based system design with special considerations. On this paper, the entire process necessary for the quantitative risk analysis was explained to meet the satisfactory safety level of gas fuelled ship.