• Title/Summary/Keyword: Ship's stability

Search Result 130, Processing Time 0.021 seconds

Wind Tunnel Test Study on the Wings of WIG Ship (WIG선의 날개에 대한 풍동실험 고찰)

  • Kim, S.K.;Suh, S.B.;Lee, D.H.;Kim, K.E.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.60-67
    • /
    • 1997
  • This paper presents the results of 3rd wind tunnel test for the wings of WIG R/C test models, 'Hanjin-1' & 'Hanjin-2'. We made 'Hanjin-1' in last May 1995 and had a success in test flight. And in order to grasp the aerodynamic characteristics of wings in ground effect, the measurements of lift and drag were carried out for the various kinds of wing. It was shown that lift and lift-drag ratio increase with decrease of the clearance, but the feature was considerably depended on the shape of wing section. In this case we select the three kind of wing. section, and then compare their characteristics especially for a stability in longitudinal motion. They are NACA6409 for 'Hanjin-1' and the two kinds of DHMTU for ekranoplans of Russia. Experimental results show that the pitching moments of DHMTU wing sections are smaller than NACA6409.

  • PDF

A Study on the Structural Stability and Effectiveness of Rope Cutter for Ship's Propeller (선박추진기용 로프절단장치의 구조 안정성 및 효용성에 관한 연구)

  • Kim, Jun-Soo;Seul, Youngyoon;Lee, Du-Yong;Park, Kitae;Kim, Tae Hun;Choi, Jae-Hyuk;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.550-556
    • /
    • 2021
  • The scissor-type rope cutter is the most widely used amongst all kinds of commercially available rope cutters in Korea. In this study, we performed finite element analysis on the scissor-type rope cutter. We determined the structure of the cutter that would ensure its stable operation in various situations involving rope entanglement, and verified its effectiveness by testing it in the lab and in an actual ship. These investigations revealed that when the propeller shaft was not rotated by rope entanglement, the constant torque generated by the engine resulted in the torsion of the rope cutter and maximum deformation in the lower blade, which was not restricted by finite element analysis. With increasing blade thickness, the maximum values of deformation and equivalent stress decreased, resulting in a rise in the safety factor. At the constant blade thickness, the effect of the torque variations on the maximum equivalent stress and the maximum deformation is independent of the position of the external force of the rope cutter and decreases in direct proportion. The results of this study confirmed that the rope-cutter structure determined by analysis could lead to a hassle-free removal of ropes and fishing nets under all conditions and environments.

Suppression of Coupled Pitch-Roll Motions using Quasi-Sliding Mode Control (준 슬라이딩 모드 제어를 이용한 선박의 종동요 및 횡동요 억제)

  • Lee, Sang-Do;Cuong, Truong Ngoc;Xu, Xiao;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.211-218
    • /
    • 2021
  • This paper addressed the problems of controlling the coupled pitch-roll motions in a marine vessel exposed to the regular waves in the longitudinal and transversal directions. Stabilization of the pitch and roll motions can be regarded as the essential task to ensure the safety of a ship's navigation. One of the important features in the pitch-roll motions is the resonance phenomena, which result in unexpected large responses in terms of pitch and roll modes in some specific conditions. Besides, owing to its inherent characteristics of coupled combination and nonlinearity of restoring terms, the vessel shows various dynamical behaviors according to the system parameters, especially in the pitch responses. Above all, it can be seen that suppression of pitch rate remains the most significant challenge to overcome for ship maneuvering safety studies. To secure the stable upright condition, a quasi-sliding mode control scheme is employed to reduce the undesirable pitch and roll responses as well as chattering elimination. The Lyapunov theory is adopted to guarantee the closed stability of the pitch-roll system. Numerical simulations demonstrate the effectiveness of the control scheme. Finally, the control goals of state convergences and chattering reduction are effectively realized through the proposed control synthesis.

Counting Harmful Aquatic Organisms in Ballast Water through Image Processing (이미지처리를 통한 선박평형수 내 유해수중생물 개체수 측정)

  • Ha, Ji-Hun;Im, Hyo-Hyuk;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.3
    • /
    • pp.383-391
    • /
    • 2016
  • Ballast water provides stability and manoeuvrability to a ship. Foreign harmful aquatic organisms, which were transferred by ballast water, cause disturbing ecosystem. In order to minimize transference of foreign harmful aquatic organisms, IMO(International Maritime Organization) adopted the International Convention for the Control and Management of Ship's Ballast Water and Sediments in 2004. If the convention take effect, a port authority might need to check that ballast water is properly disposed of. In this paper, we propose a method of counting harmful aquatic organisms in ballast water thorough image processing. We extracted three samples from the ballast water that had been collected at Busan port in Korea. Then we made three grey-scale images from each sample as experimental data. We made a comparison between the proposed method and CellProfiler which is a well known cell-counting program based on image processing. Setting of CellProfiler is empirically chosen from the result of cell count by an expert. After finding a proper threshold for each image at which the result is similar to that of CellProfiler, we used the average value as the final threshold. Our experimental results showed that the proposed method is simple but about ten times faster than CellProfiler without loss of the output quality.

May 24 Measures and Future North Korea Policy (5.24 대북조치와 향후 대북정책 과제)

  • Kim, Tae-Woo
    • Strategy21
    • /
    • s.34
    • /
    • pp.128-148
    • /
    • 2014
  • In south Korea, the so-called 'conservative-liberal' rivalry over the assessment of the government's North Korean policies is seen to be impeding the road to right policy choices. For example, the liberals accused former President Lee Myung-bak's hardline policy of provoking Pyongyang and leading to a deterioration of inter-Korean relations, while the conservatives appreciated it for helping nurture mutually beneficial inter-Korean relations in the longer term by compelling North Korea to observe international norms. However, such debate over the vices and virtues of Seoul's North Korea policies is hardly meaningful as the measuring sticks used by the liberals and the conservatives are entirely different matters. The two major goals South Korea must pursue with its North Korean policies should be 'peaceful management of division' and 'change in North Korea'. The former is related to maintaining stability within South Korea and promoting co-prosperity with North Korea. For this, the nation needs to engage, encompass and assist the Pyongyang regime. The second goal is also necessary since South Korea, as a divided nation, must seek a unified Korea under the system of democracy and market economies by bringing change in North Korea. For this, South Korea needs powerful leverages with which it can persuade and coerce the North. This means that the nation is destined to simultaneously chase the above-mentioned two goals, while also both recognizing and negating the legitimacy of the North Korean regime. This situation necessitates Seoul to apply flexibility in reconciling with Pyongyang while applying firm principles to sever the vicious circle involving the North's military provocations. The May 25 Measures, which banned trade and economic cooperation with the North except those related to humanitarian assistance, were taken as sanctions against Pyongyang for sinking the South Korean corvette Chonan in March 2010. The Measures were taken by the Seoul government immediately after a multinational investigation team discovered evidence confirming that the South Korean naval ship had been torpedoed by a midget North Korean submarine. Naturally, the May 24 Measures have since then become a major stumbling block in inter-Korean exchange, prompting opposition politicians and concerned entrepreneurs to demand Seoul to unilaterally lift the Measures. Given the significant damages the Measures have inflicted on inter-Korean economic relations, removing them remains as homework for both Koreas. However, the Measures pertains to the 'principles on national security' the Seoul government must adhere to under all circumstances. This is why North Korea's apology and promises not to repeat similar provocations must come first. For now, South Korea has no alternative but to let North Korea solve the problems it has created. South Korea's role is to help the North do so.

Design of Robust Speed Controllers for Marine Diesel Engine (선박용 대형 디젤 기관의 강인 속도 제어기 설계)

  • Hwang, Soon-Kyu;Lee, Young-Chan;Kim, Chang-Hwa;Jung, Byung-Gun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.820-828
    • /
    • 2011
  • Energy saving is one of the most important factors for profits in marine transportation. In order to reduce the specific fuel oil consumption, the ship's propulsion efficiency must be increased as much as possible. The propulsion efficiency depends upon a combination of propulsion engine and propeller that has better efficiency as lower rotational speed. As the engine has lower speed the variation of rotational torque become larger because of the longer delay time in fuel oil injection process. In this study, robust control theory is applied to the design of engine speed controllers which are sub-optimal $H_{\infty}$ controller, $H_{\infty}$ loop-shaping controller and ${\mu}$-synthesis controller considering robust stability and robust performance. And the validity of these three controllers is investigated through the results of computer simulation.

Evaluation of Cavitation Characteristics in Seawater on HVOF Spray Coated Layer with WC-27NiCr Material for Cu Alloy (구리합금에 대한 WC-27NiCr 초고속화염용사 코팅층의 해수내 캐비테이션 특성 평가)

  • Han, Min-Su;Kim, Min-Sung;Jang, Seok-Ki;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.263-269
    • /
    • 2012
  • Copper alloys are commonly applied to ship's propellers, pumps and valves which are serviced in seawater due to their good castability and corrosion resistance. In the environment of high flow velocity, however, erosion damage predominates over corrosion damage. In particular, the cavitation in seawater environment accelerates surface damage to copper alloys, resulting in degradation of products and economic losses and also threatening safety. The surface was coated with WC-27NiCr by high velocity oxygen fuel(HVOF) spraying technique to attain durability and cavitation resistance of copper alloys under high velocity/pressure flow. The cavitation test was performed for the WC-27NiCr coating deposited by HVOF in seawater at the amplitude of $30{\mu}m$ with seawater temperature. The cavitation at $15^{\circ}C$ caused exfoliation of the coating layer in 17.5 hours while that of $25^{\circ}C$ caused the exfoliation in 12.5 hours. When the temperature of seawater was elevated to $25^{\circ}C$ from $15^{\circ}C$, more damage was induced by over 160%. Although WC-27NiCr has good durability, corrosion resistance and eletrochemical stability, the cavitation damage rate of the coating layer could remarkably increase at the elevated temperatures under cavitation environments.

An Analysis on the Characteristics of Wind Distribution in the Coast of Busan Using AWS Data (AWS 데이터를 이용한 부산 해안의 바람분포 특성 해석)

  • Seol, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.33 no.8
    • /
    • pp.549-554
    • /
    • 2009
  • Wind velocity and wind direction are very important in the viewpoint of ship's safety and stability of port structure. The characteristics of wind distribution in the coast of Busan are analyzed for 10 years from 1997 to 2006 using AWS(Automatic Weather System) data. The characteristics of wind distribution of Miryang, is not affected by the land and sea breeze are also examined to understand clearly the characteristics of wind distribution in the coast of Busan. The mean wind velocity in the coast of Busan is stronger than that of Miryang. The mean wind velocitie at Youngdo and Gadukdo stations of Busan are stronger about 2.0 times than those at IlGwang, Haeundae and Daeyeon stations. The correlation a states show that the variation tendencies of monthly mean wind velocitie in the coast of Busan are very similar. The maximum monthly mean velocitie in the coast of Busan are recorded in September. This re ult is closely related to the influence of typhoon. The maximum instantaneous wind velocitie are also strong at Youngdo and Gadukdo stations and the peaks of maximum instantaneous wind $velocit^9$ are observed mainly from August to September. In the coast of Busan, the SW'ly-NNE'ly wind are prevailing in the winter and the SW'ly and NE'ly wind are predomi snt in the spring. w that the vs of wind direction in the summer and athumn are similar with those in the spring and winter, respectively.

A Study on the Buckling Stability due to Lateral Impact of Gas Pipe Installed on the Sea-bed (해저면에 설치된 가스관의 외부충격에 의한 좌굴 안전성 검토)

  • Park, Joo-Shin;Yi, Myung-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.414-421
    • /
    • 2022
  • Subsea oil and gas exploration is increasingly moving into deeper water depths, and typically, subsea pipelines operate under high pressure and temperature conditions. Owing to the difference in these components, the axial force in the pipe is accumulated. When a pipeline is operated at a high internal pressure and temperature, it will attempt to expand and contract for differential temperature changes. Typically, the line is not free to move because of the plane strain constraints in the longitudinal direction and soil friction effects. For a positive differential temperature, it will be subjected to an axial compressive load, and when this load reaches a certain critical value, the pipe may experience vertical (upheaval buckling) or lateral (snaking buckling) movements that can jeopardize the structural integrity of the pipeline. In these circumstances, the pipeline behavior should be evaluated to ensure the pipeline structural integrity during operation in those demanding loading conditions. Performing this analysis, the correct mitigation measures for thermal buckling can be considered either by accepting bar buckling but preventing the development of excessive bending moment or by preventing any occurrence of bending.

Research on the Rheological Properties of Aqueous Film Forming Foam to Respond to Ship Oil Fires (함정 유류화재 대응을 위한 수성막포의 유변학적 특성 연구)

  • Kil-Song Jeon;Hwi-Seong Kim;Jung-Hoon You;Yong-Ho Yoo;Jin-Ouk Park
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.603-607
    • /
    • 2023
  • Aqueous film forming foam (AFFF) is a critical fire suppression agent used in combating hydrocarbon fires. This type of fire suppressant is highly effective due to its ability to form a protective film, dissipate heat, inhibit combustion, and utilize a blend of chemical substances to extinguish fires. While these properties offer significant advantages in responding to hydrocarbon fires, AFFF is distinct in its deployment as it is dispensed in the form of foam. Therefore, the rheological analysis of AFFF foam using a rheometer plays a crucial role in predicting the spray characteristics of AFFF for combating hydrocarbon fires, and this is closely associated with effective fire suppression. In this study, we conducted rheometer experiments to confirm the non-Newtonian behavior (shear-thinning) of AFFF foam and obtained data on the form's stability. These experimental data are expected to contribute to enhancing the efficiency of fire suppression systems utilizing AFFF.