• Title/Summary/Keyword: Shiga toxin-producing Escherichia coli non-O157

Search Result 4, Processing Time 0.017 seconds

Acid Resistance of Non-O157 Shiga Toxin-Producing Escherichia coli Adapted in Fruit Juices in Simulated Gastric Fluid (위합성용액에서 과일주스에 노출한 Non-O157 Shiga Toxin-Producing Escherichia coli의 산 저항성 평가)

  • Kim, Gwang-Hee;Oh, Deog-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.577-584
    • /
    • 2016
  • The objectives of this study were I) to compare the acid resistance (AR) of seven non-O157 Shiga toxin-producing Escherichia coli (STEC) serogroups, including O26, O45, O103, O111, O121, O145, and O157:H7 STEC isolated from various sources, in 400 mM acetic acid solution (AAS) at pH 3.2 and $30^{\circ}C$ for 25 min with or without glutamic acid and II) to determine strain survival upon exposure to simulated gastric fluid (SGF, pH 1.5) at $37^{\circ}C$ for 2 h after acid adaptation in apple, pineapple, orange, and strawberry juices at pH 3.8, $4^{\circ}C$ and $20^{\circ}C$. Results show that the O111 serogroup strains had the strongest AR (0.12 log reduction CFU/mL) which was very similar to that of O157:H7 STEC (P>0.05), compared to other serogroups in AAS without glutamic acid, whereas O26 serogroup strains showed the most sensitive AR. However, there was no significant (P>0.05) difference of AR among seven serogroups in AAS with glutamic acid. In the SGF study, 05-6545 (O45:H2), 08023 (O121:H19), and 03-4669 (O145:NM) strains adapted in fruit juices at $4^{\circ}C$ and $20^{\circ}C$ displayed enhanced survival with exposure to SGF for 60 min compared to 06E0218 (O157:H7) strains (P<0.05). In addition, 4 STEC strains adapted in pineapple juice at $4^{\circ}C$ showed enhanced survival with exposure to SGF for 60 min compared to those strains acid-adapted in the other fruit juices. Generally, adaptation at $4^{\circ}C$ in fruit juices resulted in significantly enhanced survival levels compared to acid-adapted at $20^{\circ}C$ and non-adapted conditions. The AR caused by adaptation in fruit juices at low temperature may thus increase survival of non-O157 STEC strain in acidic environments such as the gastrointestinal tract. These results suggest that more careful strategies should be provided to protect against risk of foodborne illness by non-O157 STEC.

Characteristics of Bacteriophage Isolates and Expression of Shiga Toxin Genes Transferred to Non Shiga Toxin-Producing E. coli by Transduction

  • Park, Da-Som;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.710-716
    • /
    • 2021
  • A risk analysis of Shiga toxin (Stx)-encoding bacteriophage was carried out by confirming the transduction phage to non-Stx-producing Escherichia coli (STEC) and subsequent expression of the Shiga toxin genes. The virulence factor stx1 was identified in five phages, and both stx1 and stx2 were found in four phages from a total of 19 phage isolates with seven non-O157 STEC strains. The four phages, designated as ϕNOEC41, ϕNOEC46, ϕNOEC47, and ϕNOEC49, belonged morphologically to the Myoviridae family. The stabilities of these phages to temperature, pH, ethanol, and NaClO were high with some variabilities among the phages. The infection of five non-STEC strains by nine Stx-encoding phages occurred at a rate of approximately 40%. Non-STEC strains were transduced by Stx-encoding phage to become lysogenic strains, and seven convertant strains had stx1 and/or stx2 genes. Only the stx1 gene was transferred to the receptor strains without any deletion. Gene expression of a convertant having both stx1 and stx2 genes was confirmed to be up to 32 times higher for Stx1 in 6% NaCl osmotic media and twice for Stx2 in 4% NaCl media, compared with expression in low-salt environments. Therefore, a new risk might arise from the transfer of pathogenic genes from Stx-encoding phages to otherwise harmless hosts. Without adequate sterilization of food exposed to various environments, there is a possibility that the toxicity of the phages might increase.

Characterization of Endolysin LysECP26 Derived from rV5-Like Phage vB_EcoM-ECP26 for Inactivation of Escherichia coli O157:H7

  • Park, Do-Won;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1552-1558
    • /
    • 2020
  • With an increase in the consumption of non-heated fresh food, foodborne shiga toxin-producing Escherichia coli (STEC) has emerged as one of the most problematic pathogens worldwide. Endolysin, a bacteriophage-derived lysis protein, is able to lyse the target bacteria without any special resistance, and thus has been garnering interest as a powerful antimicrobial agent. In this study, rV5-like phage endolysin targeting E. coli O157:H7, named as LysECP26, was identified and purified. This endolysin had a lysozyme-like catalytic domain, but differed markedly from the sequence of lambda phage endolysin. LysECP26 exhibited strong activity with a broad lytic spectrum against various gram-negative strains (29/29) and was relatively stable at a broad temperature range (4℃-55℃). The optimum temperature and pH ranges of LysECP26 were identified at 37℃-42℃ and pH 7-8, respectively. NaCl supplementation did not affect the lytic activity. Although LysECP26 was limited in that it could not pass the outer membrane, E. coli O157: H7 could be effectively controlled by adding ethylenediaminetetraacetic acid (EDTA) and citric acid (1.44 and 1.14 log CFU/ml) within 30 min. Therefore, LysECP26 may serve as an effective biocontrol agent for gram-negative pathogens, including E. coli O157:H7.

Rapid detection of shiga-toxin producing E. coli by bacteriophage amplification assay (박테리오파지 증폭 기법을 활용한 시가 독소 생성 병원성 대장균의 신속 검출)

  • Baek, Da-Yun;Park, Jong-Hyun;Cho, Seok-Cheol;Lee, Young-Duck
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.103-108
    • /
    • 2020
  • Shiga toxin-producing Escherichia coli (STEC) is an important pathogenic bacteria and can cause severe foodborne disease. For STEC detection, conventional culture methods have disadvantages in the fact that conventional culture takes a long time to detect and PCR can also detect dead bacteria. To overcome these problems, we suggest a bacteriophage amplification assay, which utilizes the ability of bacteriophages to infect living cells and their high specificity. We used a combination of six bacteriophages infecting E. coli to make the bacteriophage cocktail and added ferrous ammonium sulfate as a virucidal agent to remove free-bacteriophages. When cherry tomato and paprika were artificially inoculated with the cocktail at a final concentration of around 3 log CFU/mL and were enriched for at least 5 h in mTSB broth with Novobiocin, approximately 2-3 log PFU/mL were detected through the bacteriophage amplification assay. Therefore, bacteriophage amplification assay might be convenient and a useful method to detect STEC in a short period of time.