Browse > Article
http://dx.doi.org/10.9721/KJFST.2020.52.1.103

Rapid detection of shiga-toxin producing E. coli by bacteriophage amplification assay  

Baek, Da-Yun (Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University)
Park, Jong-Hyun (Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University)
Cho, Seok-Cheol (Department of Food Science and Engineering, Seowon University)
Lee, Young-Duck (Department of Food Science and Engineering, Seowon University)
Publication Information
Korean Journal of Food Science and Technology / v.52, no.1, 2020 , pp. 103-108 More about this Journal
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an important pathogenic bacteria and can cause severe foodborne disease. For STEC detection, conventional culture methods have disadvantages in the fact that conventional culture takes a long time to detect and PCR can also detect dead bacteria. To overcome these problems, we suggest a bacteriophage amplification assay, which utilizes the ability of bacteriophages to infect living cells and their high specificity. We used a combination of six bacteriophages infecting E. coli to make the bacteriophage cocktail and added ferrous ammonium sulfate as a virucidal agent to remove free-bacteriophages. When cherry tomato and paprika were artificially inoculated with the cocktail at a final concentration of around 3 log CFU/mL and were enriched for at least 5 h in mTSB broth with Novobiocin, approximately 2-3 log PFU/mL were detected through the bacteriophage amplification assay. Therefore, bacteriophage amplification assay might be convenient and a useful method to detect STEC in a short period of time.
Keywords
Bacteriophages; amplification; rapid detection; shiga-toxin; E. coli;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Lienemann T, Kyyhkynen A, Halkilahti J, Haukka K, Siitonen A. Characterization of Salmonella Typhimurium isolates from domestically acquired infections in Finland by phage typing, antimicrobial susceptibility testing, PFGE and MLVA. BMC Microbiol. 15: 131 (2015)   DOI
2 Lim GY, Park DW, Lee YD, Park JH. Isolation and characterization of bacteriophages for the control of Shiga Toxin-producing E. coli. Korean J. Food Sci. Technol. 50: 594-600 (2018)   DOI
3 Ly-Chatain MH, Moussaoui S, Vera A, Rigobello V, Demarigny Y. Antiviral effect of cationic compounds on bacteriophages. Front. Microbiol. 4: 46 (2013)   DOI
4 Majowicz SE, Scallan E, Jones-Bitton A, Sargeant JM, Stapleton J, Angulo FJ, Yeung DH, Kirk MD. Global incidence of human Shiga toxinproducing Escherichia coli infections and deaths: a systematic review and knowledge synthesis. Foodborne Pathog. Dis. 11: 447-455 (2014)   DOI
5 McNerney R, Wilson S, Sidhu A, Harley Va, Al Suwaidi Z, Nye P, Parish T, Stoker N. Inactivation of mycobacteriophage D29 using ferrous ammonium sulphate as a tool for the detection of viable Mycobacterium smegmatis and M. tuberculosis. Res. Microbiol. 149: 487-495 (1998)   DOI
6 Nakao H, Kataoka C, Kiyokawa N, Fujimoto J, Yamasaki S, Takeda T. Monoclonal antibody to Shiga toxin 1, which blocks receptor binding and neutralizes cytotoxicity. Microbiol. immunol. 46: 777-780 (2002)   DOI
7 Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11: 142-201 (1998)   DOI
8 Oliveira A, Sillankorva S, Quinta R, Henriques A, Sereno R, Azeredo J. Isolation and characterization of bacteriophages for avian pathogenic E. coli strains. J. Appl. Microbiol. 106: 1919-1927 (2009)   DOI
9 Oliveira I, Almeida RCdC, Hofer E, Almeida PF. Bacteriophage amplification assay for detection of Listeria spp. using virucidal laser treatment. Braz. J. Microbiol. 43: 1128-1136 (2012)   DOI
10 Ackermann HW. Bacteriophage observations and evolution. Res. Microbiol. 154: 245-251 (2003)   DOI
11 Park DJ, Drobniewski F, Meyer A, Wilson S. Use of a phage-based assay for phenotypic detection of mycobacteria directly from sputum. J. Clin. Microbiol. 41: 680-688 (2003)   DOI
12 Park WJ, Lim GY, Park JH. Enumeration of Weissella cibaria phage with cytometry, epifluorescence microscopy, and plaque assay. Korean J. Food Sci. Technol. 50: 244-247 (2018)   DOI
13 Patel J, Sharma M. Differences in attachment of Salmonella enterica serovars to cabbage and lettuce leaves. Int. J Food Microbiol. 139: 41-47 (2010)   DOI
14 Raya RR, Varey P, Oot RA, Dyen MR, Callaway TR, Edrington TS, Kutter EM, Brabban AD. Isolation and characterization of a new T-even bacteriophage, CEV1, and determination of its potential to reduce Escherichia coli O157: H7 levels in sheep. Appl. Environ. Microbiol. 72: 6405-6410 (2006)   DOI
15 Smith JL, Fratamico PM, Gunther IV NW. Shiga toxin-producing Escherichia coli. Adv. Appl. Microbiol. 86: 145-197 (2014)   DOI
16 Stewart GS, Jassim SA, Denyer SP, Newby P, Linley K, Dhir VK. The specific and sensitive detection of bacterial pathogens within 4 h using bacteriophage amplification. J. Appl. Microbiol. 84: 777-783 (1998)   DOI
17 Sulakvelidze A, Alavidze Z, Morris JG. Bacteriophage therapy. Antimicrob. Agents. Chemother. 45: 649-659 (2001)   DOI
18 Brooks JT, Sowers EG, Wells JG, Greene KD, Griffin PM, Hoekstra RM, Strockbine NA. Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983-2002. J. Infect. Dis. 192: 1422-1429 (2005)   DOI
19 Torres AG, Amaral MM, Bentancor L, Galli L, Goldstein J, Krger A, Rojas-Lopez M. Recent advances in shiga toxin-producing Escherichia coli research in Latin America. Microorganisms 6: 100-118 (2018)   DOI
20 Tzipilevich E, Habusha M, Ben-Yehuda S. Acquisition of phage sensitivity by bacteria through exchange of phage receptors. Cell 168: 186-199 (2017)   DOI
21 de Siqueira R, Dodd C, Rees C. Evaluation of the natural virucidal activity of teas for use in the phage amplification assay. Int. J. Food Microbiol. 111: 259-262 (2006)   DOI
22 Derda R, Lockett MR, Tang SK, Fuller RC, Maxwell EJ, Breiten B, Cuddemi CA, Ozdogan A, Whitesides GM. Filter-based assay for Escherichia coli in aqueous samples using bacteriophage-based amplification. Anal. Chem. 85: 7213-7220 (2013)   DOI
23 Dini C, Urraza PJ. Isolation and selection of coliphages as potential biocontrol agents of enterohemorrhagic and Shiga toxin-producing E. coli (EHEC and STEC) in cattle. J. Appl. Microbiol. 109: 873-887 (2010)   DOI
24 Elhariry HM. Attachment strength and biofilm forming ability of Bacillus cereus on green-leafy vegetables: cabbage and lettuce. Food microbiol. 28: 1266-1274 (2011)   DOI
25 Favrin SJ, Jassim SA, Griffiths MW. Application of a novel immunomagnetic separation-bacteriophage assay for the detection of Salmonella enteritidis and Escherichia coli O157: H7 in food. Int. J. food microbiol. 85: 63-71 (2003)   DOI
26 Hughes JM, Wilson ME, Johnson KE, Thorpe CM, Sears CL. The emerging clinical importance of non-O157 Shiga toxin-producing Escherichia coli. Clin. Infect. Dis. 43: 1587-1595 (2006)   DOI
27 Garrido-Maestu A, Fucios P, Azinheiro S, Carvalho C, Carvalho J, Prado M. Specific detection of viable Salmonella Enteritidis by phage amplification combined with qPCR (PAA-qPCR) in spiked chicken meat samples. Food control. 99: 79-83 (2019)   DOI
28 Gould LH, Mody RK, Ong KL, Clogher P, Cronquist AB, Garman KN, Lathrop S, Medus C, Spina NL, Webb TH. Increased recognition of non-O157 Shiga toxin-producing Escherichia coli infections in the United States during 2000-2010: epidemiologic features and comparison with E. coli O157 infections. Foodborne Pathog. Dis. 10: 453-460 (2013)   DOI
29 Guglielmotti DM, Mercanti DJ, Reinheimer JA, Quiberoni ADL. Efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages. Front. Microbiol. 2: 282 (2012)   DOI
30 Hendrix RW. Bacteriophage genomics. Curr. Opin. Microbiol. 6: 506-511 (2003)   DOI
31 Jassim S, Griffiths M. Evaluation of a rapid microbial detection method via phage lytic amplification assay coupled with Live/Dead fluorochromic stains. Lett. Appl. Microbiol. 44: 673-678 (2007)   DOI
32 Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2: 123-140 (2004)   DOI
33 Kim EJ, Lee H, Lee JH, Ryu S, Park JH. Morphological features and lipopolysaccharide attachment of coliphages specific to Escherichia coli O157: H7 and to a broad range of E. coli hosts. Appl. Biol. Chem. 59: 109-116 (2016)   DOI
34 Lee YD, Park JH. Characterization and application of phages isolated from sewage for reduction of Escherichia coli O157: H7 in biofilm. LWT-Food Sci. Technol. 60: 571-577 (2015)   DOI
35 Law D. Virulence factors of Escherichia coli O157 and other Shiga toxin-producing E. coli. J. Appl. Microbiol. 88: 729-745 (2000)   DOI