• Title/Summary/Keyword: Shifter

Search Result 389, Processing Time 0.028 seconds

RF Gas Sensor Using 4-Port Hybrid Coupler with Conducting Polymer (전도성 고분자 물질이 결합된 하이브리드 커플러를 적용한 RF 가스 센서)

  • Lee, Yong-Joo;Kim, Byung-Hyun;Lee, Hee-Jo;Hong, Yunseog;Lee, Seung Hwan;Choi, Hyang Hee;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • In this paper, a gas sensor using a modified $90^{\circ}$ hybrid coupler structure with conducting polymer which operates at 2.4 GHz is represented. Conducting polymers are used to the gas sensing material in proposed sensors. The conducting polymer varies its electrical property, such as work function and conductivity corresponding to the certain gas. To verify this variation of electrical property of conducting polymer at microwave frequencies, the conducting polymer is incorporated with the $90^{\circ}$ hybrid coupler structure, and this proposed sensor operates as reflection type variable attenuator and variable phase shifter. The conducting polymer is employed as impedence-variable transmission lines that cause a impedance mismatching between the general transmission line and conducting polymer. The experiment was conducted with 100 ppm ethanol gas at temperature of $28^{\circ}C$ and relative humidity of 85 %. As a result, the amplitude deviation of $S_{21}$ is 0.13 dB and the frequency satisfying ${\angle}S_{21}=360^{\circ}$ is shifted about 2.875 MHz.

A Study on Implementation and Performance Evaluation of Error Amplifier for the Feedforward Linear Power Amplifier (Feedforward 선형 전력증폭기를 위한 에러증폭기의 구현 및 성능평가에 관한 연구)

  • Jeon, Joong-Sung;Cho, Hee-Jea;Kim, Seon-Keun;Kim, Ki-Moon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.209-215
    • /
    • 2003
  • In this paper. We tested and fabricated the error amplifier for the 15 Watt linear power amplifier for the IMT-2000 baseband station. The error amplifier was comprised of subtractor for detecting intermodulation distortion, variable attenuator for control amplitude, variable phase shifter for control phase, low power amplifier and high power amplifier. This component was designed on the RO4350 substrate and integrated the aluminum case with active biasing circuit. For suppression of spurious, the through capacitance was used. The characteristics of error amplifier measured up to 45 dB gain, $\pm$0.66 dB gain flatness and -15 dB input return loss. Results of application to the 15 Watt feedforward Linear Power Amplifier, the error amplifier improved with 27 dB cancellation from 34 dBc to 61 dBc IM$_3$.

An effective transform hardware design for real-time HEVC encoder (HEVC 부호기의 실시간처리를 위한 효율적인 변환기 하드웨어 설계)

  • Jo, Heung-seon;Kumi, Fred Adu;Ryoo, Kwang-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.416-419
    • /
    • 2015
  • In this paper, we propose an effective design of transform hardware for real-time HEVC(High Efficiency Video Coding) encoder. HEVC encoder determines the transform mode($4{\times}4$, $8{\times}8$, $16{\times}16$, $32{\times}32$) by comparing RDCost. RDCost require a significant amount of computation and time because it is determined by bit-rate and distortion which is computated via transform, quantization, dequantization, and inverse transform. This paper therefore proposes a new method for transform mode determination using sum of transform coefficient. Also, proposed hardware architecture is implemented with multiplexer, recursive adder/subtracter, and shifter only to derive reduction of the computation. Proposed method for transform mode determination results in an increase of 0.096 in BD-PSNR, 0.057 in BD-Bitrate, and decrease of 9.3% in encoding time by comparing HM 10.0. The hardware which is proposed is implemented by 256K logic gates in TSMC 130nm process. Its maximum operation frequency is 200MHz. At 140MHz, the proposed hardware can support 4K Ultra HD video encoding at 60fps in real time.

  • PDF

Fast Stream Cipher AA32 for Software Implementation (소프트웨어 구현에 적합한 고속 스트림 암호 AA32)

  • Kim, Gil-Ho;Park, Chang-Soo;Kim, Jong-Nam;Cho, Gyeong-Yeon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6B
    • /
    • pp.954-961
    • /
    • 2010
  • Stream cipher was worse than block cipher in terms of security, but faster in execution speed as an advantage. However, since so far there have been many algorithm researches about the execution speed of block cipher, these days, there is almost no difference between them in the execution speed of AES. Therefore an secure and fast stream cipher development is urgently needed. In this paper, we propose a 32bit output fast stream cipher, AA32, which is composed of ASR(Arithmetic Shifter Register) and simple logical operation. Proposed algorithm is a cipher algorithm which has been designed to be implemented by software easily. AA32 supports 128bit key and executes operations by word and byte unit. As Linear Feedback Sequencer, ASR 151bit is applied to AA32 and the reduction function is a very simple structure stream cipher, which consists of two major parts, using simple logical operations, instead of S-Box for a non-linear operation. The proposed stream cipher AA32 shows the result that it is faster than SSC2 and Salsa20 and satisfied with the security required for these days. Proposed cipher algorithm is a fast stream cipher algorithm which can be used in the field which requires wireless internet environment such as mobile phone system and real-time processing such as DRM(Digital Right Management) and limited computational environments such as WSN(Wireless Sensor Network).

Design of a CMOS Tx RF/IF Single Chip for PCS Band Applications (PCS 대역 송신용 CMOS RF/IF 단일 칩 설계)

  • Moon, Yo-Sup;Kwon, Duck-Ki;Kim, Keo-Sung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.236-244
    • /
    • 2003
  • In this paper, RF and IF circuits for mobile terminals which have usually been implemented using expensive BiCMOS processes are designed using CMOS circuits, and a Tx CMOS RF/IF single chip for PCS applications is designed. The designed circuit consists of an IF block including an IF PLL frequency synthesizer, an IF mixer, and a VGA and an RF block including a SSB RF mixer and a driver amplifier, and performs all transmit signal processing functions required between digital baseband and the power amplifier. The phase noise level of the designed IF PLL frequency synthesizer is -114dBc/Hz@100kHz and the lock time is less than $300{\mu}s$. It consumes 5.3mA from a 3V power supply. The conversion gain and OIP3 of the IF mixer block are 3.6dB and -11.3dBm. It consumes 5.3mA. The 3dB frequencies of the VGA are greater than 250MHz for all gain settings. The designed VGA consumes 10mA. The designed RF block exhibits a gain of 14.93dB and an OIP3 of 6.97dBm. The image and carrier suppressions are 35dBc and 31dBc, respectively. It consumes 63.4mA. The designed circuits are under fabrication using a $0.35{\mu}m$ CMOS process. The designed entire chip consumes 84mA from a 3V supply, and its area is $1.6㎜{\times}3.5㎜$.

  • PDF

A Design and Fabrication of a Compact Ka Band Transmit/Receive Module Using a Quad-Pack (쿼드팩을 이용한 소형 Ka 대역 송수신(T/R) 모듈의 설계 및 제작)

  • Oh, Hyun-Seok;Yeom, Kyung-Whan;Chong, Min-Kil;Na, Hyung-Gi;Lee, Sang-Joo;Lee, Ki-Won;Nam, Byung-Chang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.389-398
    • /
    • 2011
  • In this paper, the design and fabrication of a transmit/receive(T/R) module for Ka-band phased array radar is presented. A 5bit digital phase shifter and digital attenuator were used in common for both transmitter and receiver considering unique Ka-band characteristic. The circulator was excluded in the T/R module and was placed outside T/R module. The transmitting power per element antenna is designed to be about 1 W and the noise figure is designed to be below 8 dB. The designed T/R module RF part has a compact size of $5\;mm{\times}4\;mm{\times}57\;mm$. In order to implement the T/R module, MMICs used in T/R module was separately assessed before assembly of the designed T/R module. The transmitter of the fabricated T/R module shows about 1 W at 5 dBm unit module input power and the receiver shows a gain of about 20 dB and a noise figure of below 8 dB as expected in the design stage.

Development of 1×16 Thermo-optic MZI Switch Using Multimode Interference Coupler (다중모드 간섭현상을 이용한 1×16 마하젠더 스위치 개발)

  • Kim, Sung-Won;Hong, Jong-Kyun;Lee, Sang-Sun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.469-474
    • /
    • 2006
  • A $1{\times}16$ thermo-optic switch with small excess loss using multimode interference(MMI) couplers is designed, fabricated, and measured. This paper introduces the proposed $1{\times}16$ thermo-optic switch, and discusses the measurement results. The $1{\times}16$ thermo-optic switch is farmed as 4-stage which consists of 15 unit devices. The unit devices are the $2{\times}2$ thermo-optic switches with Mach-Zehnder interferometer(MZI) structure. The characteristics of the $1{\times}16$ thermo-optic switch depends strongly on each unit device. The unit deviceconsists of two 3-dB general interference MMI couplers and two single mode waveguide arms as a phase shifter. First of all, the 3-dB optical splitter and $2{\times}2$ MZI thermo-optic switch have been tested to confirm the characteristics of the unit devices of the $1{\times}16$ MZI thermo-optic switch. Using the measurement results of the unit devices, the $1{\times}16$ MZI thermo-optic switch can be produced with better characteristics. The resultant structure of the MMI coupler with the optical light source of wavelength of 1550nm for the $1{\times}16$ thermo-optic switch is that the width and the optimized length are $25{\mu}m\;and\;1580{\mu}m$, respectively. The smallest excess loss fur the unit device is -0.5dB and the average excess loss is -0.7dB.

A 10b 50MS/s Low-Power Skinny-Type 0.13um CMOS ADC for CIS Applications (CIS 응용을 위해 제한된 폭을 가지는 10비트 50MS/s 저 전력 0.13um CMOS ADC)

  • Song, Jung-Eun;Hwang, Dong-Hyun;Hwang, Won-Seok;Kim, Kwang-Soo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.25-33
    • /
    • 2011
  • This work proposes a skinny-type 10b 50MS/s 0.13um CMOS three-step pipeline ADC for CIS applications. Analog circuits for CIS applications commonly employ a high supply voltage to acquire a sufficiently acceptable dynamic range, while digital circuits use a low supply voltage to minimize power consumption. The proposed ADC converts analog signals in a wide-swing range to low voltage-based digital data using both of the two supply voltages. An op-amp sharing technique employed in residue amplifiers properly controls currents depending on the amplification mode of each pipeline stage, optimizes the performance of op-amps, and improves the power efficiency. In three FLASH ADCs, the number of input stages are reduced in half by the interpolation technique while each comparator consists of only a latch with low kick-back noise based on pull-down switches to separate the input nodes and output nodes. Reference circuits achieve a required settling time only with on-chip low-power drivers and digital correction logic has two kinds of level shifter depending on signal-voltage levels to be processed. The prototype ADC in a 0.13um CMOS to support 0.35um thick-gate-oxide transistors demonstrates the measured DNL and INL within 0.42LSB and 1.19LSB, respectively. The ADC shows a maximum SNDR of 55.4dB and a maximum SFDR of 68.7dB at 50MS/s, respectively. The ADC with an active die area of 0.53$mm^2$ consumes 15.6mW at 50MS/s with an analog voltage of 2.0V and two digital voltages of 2.8V ($=D_H$) and 1.2V ($=D_L$).

Accurate Quality Control Method of Bone Mineral Density Measurement -Focus on Dual Energy X-ray Absorptiometry- (골밀도 측정의 정확한 정도관리방법 -이중 에너지 방사선 흡수법을 중심으로-)

  • Kim, Ho-Sung;Dong, Kyung-Rae;Ryu, Young-Hwan
    • Journal of radiological science and technology
    • /
    • v.32 no.4
    • /
    • pp.361-370
    • /
    • 2009
  • The image quality management of bone mineral density is the responsibility and duty of radiologists who carry out examinations. However, inaccurate conclusions due to lack of understanding and ignorance regarding the methodology of image quality management can be a fatal error to the patient. Therefore, objective of this paper is to understand proper image quality management and enumerate methods for examiners and patients, thereby ensuring the reliability of bone mineral density exams. The accuracy and precision of bone mineral density measurements must be at the highest level so that actual biological changes can be detected with even slight changes in bone mineral density. Accuracy and precision should be continuously preserved for image quality of machines. Those factors will contribute to ensure the reliability in bone mineral density exams. Proper equipment management or control methods are set with correcting equipment each morning and after image quality management, a phantom, recommended from the manufacturer, is used for ten to twenty-five measurements in search of a mean value with a permissible range of ${\pm}1.5%$ set as standard. There needs to be daily measurement inspections on the phantom or at least inspections three times a week in order to confirm the existence or nonexistence of changes in values in actual bone mineral density. in addition, bone mineral density measurements were evaluated and recorded following the rules of Shewhart control chart. This type of management has to be conducted for the installation and movement of equipment. For the management methods of inspectors, evaluation of the measurement precision was conducted by testing the reproducibility of the exact same figures without any real biological changes occurring during reinspection. Bone mineral density inspection was applied as the measurement method for patients either taking two measurements thirty times or three measurements fifteen times. An important point when taking measurements was after a measurement whether it was the second or third examination, it was required to descend from the table and then reascend. With a 95% confidence level, the precision error produced from the measurement bone mineral figures came to 2.77 times the minimum of the biological bone mineral density change. The value produced can be stated as the least significant change (LSC) and in the case the value is greater, it can be stated as a section of genuine biological change. From the initial inspection to equipment moving and shifter, management must be carried out and continued in order to achieve the effects. The enforcement of proper quality control of radiologists performing bone mineral density inspections which brings about the durability extensions of equipment and accurate results of calculations will help the assurance of reliable inspections.

  • PDF