• Title/Summary/Keyword: Shielding radiation rate

Search Result 138, Processing Time 0.022 seconds

Mechanical Properties and Neutron Shielding Rate of Concrete with Borosilicate-Glasses and Amorphous Boron Steel Fiber (붕규산유리 및 비정질 붕소강 섬유를 혼입한 콘크리트의 역학적 성능 및 중성자 차폐성능 평가)

  • Lee, Jun-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.269-275
    • /
    • 2016
  • In this study, the mechanical properties and the neutron shielding rate of concrete with the borosilicate glass and the amorphous boron steel fiber were investigated. The measures of this investigation includes air contents, slump loss, compressive strength, static modulus of elasticity, compressive toughness, flexural strength, flexure toughness and neutron shielding rate. As a result, the neutron shielding rate of the concrete with borosilicate glasses increased even though the compressive strength and flexural strength decreased in comparison with that of plain concrete. Also, the mechanical toughness and the neutron shielding rate of the concrete with amorphous boron steel fiber increased in comparison with that of plain concrete.

Radiation shielding optimization design research based on bare-bones particle swarm optimization algorithm

  • Jichong Lei;Chao Yang;Huajian Zhang;Chengwei Liu;Dapeng Yan;Guanfei Xiao;Zhen He;Zhenping Chen;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2215-2221
    • /
    • 2023
  • In order to further meet the requirements of weight, volume, and dose minimization for new nuclear energy devices, the bare-bones multi-objective particle swarm optimization algorithm is used to automatically and iteratively optimize the design parameters of radiation shielding system material, thickness, and structure. The radiation shielding optimization program based on the bare-bones particle swarm optimization algorithm is developed and coupled into the reactor radiation shielding multi-objective intelligent optimization platform, and the code is verified by using the Savannah benchmark model. The material type and thickness of Savannah model were optimized by using the BBMOPSO algorithm to call the dose calculation code, the integrated optimized data showed that the weight decreased by 78.77%, the volume decreased by 23.10% and the dose rate decreased by 72.41% compared with the initial solution. The results show that the method can get the best radiation shielding solution that meets a lot of different goals. This shows that the method is both effective and feasible, and it makes up for the lack of manual optimization.

Fabrication and Evaluation of Radiation Shielding Property of Epoxy Resin-Type Neutron Shielding Materials (에폭시수지계 중성자 차폐재의 제조 및 방사선 차폐능 평가)

  • Cho, Soo-Haeng;Yoon, Jeong-Hyoun;Choi, Byung-I1;Do, Jae-Bum;Ro, Seung-Gy
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.2
    • /
    • pp.77-83
    • /
    • 1997
  • Epoxy resin-type neutron shielding materials, KNS(Kaeri Neutron Shield)-101, KNS-102, and KNS-103 have been fabricated to be used in spent fuel shipping cask. The base material is epoxy resin, and polypropylene, aluminium hydroxide, and boron carbide are added. These shielding materials offer good fluidity at processing, which makes it possible to apply this resin shield to complicated geometric shapes such as shipping cask. The shielding property of these shielding materials for shipping cask for loading 28 PWR spent fuel assemblies has been evaluated. ANISN code is used to evaluate the shielding property of the shipping cask with the thickness of the three neutron shielding materials greater than 10 cm. As a result of analysis, the maximum calculated dose rate at the radial surface of the cask is determined to be $300{\mu}Sv/h$ and the maximum calculated dose rate at 100 cm from the cask is $97{\mu}Sv/h$. These dose rates remain within allowable values specified in related regulations.

  • PDF

The Usefulness Evaluation of Radiation Shielding Devices in PET Scan Procedures (PET 검사 프러시저별 방사선 차폐기구의 유용성 평가)

  • Kim, Yeong-Seon;Seo, Myeong-Deok;Lee, Wan-Kyu;Jeong, Yo-Cheon;Kim, Sang-Wook;Seo, Il-Teak;Song, Jae-Beom
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.65-76
    • /
    • 2010
  • Purpose: he use of PET scanners and the number of patient in Korea have been increased for recent several years dramatically. For this reason, technologists have more possibilities to be exposed to the radiation. The hospitals using PET scanners should make an effort to reduce the radiation exposure dose. The purpose of this study was to evaluate the radiation exposure does when using radiation shielding devices. The evaluation was performed through questionnaire survey and experiment. Materials and Methods: First, the technologists who had experience working in PET center in 2008-2009 were surveyed with questionnaire and TLD Figures, personal opinion of utilization of radiation shielding devices are analyzed. Second, we measured the shielding rate of shielding devices which have been using in PET study procedures. We divided the procedures into four steps; distribution, moving, injection of $^{18}F$-FDG and patient setup. Results: First, the results of this survey, using of L-block+Syringe shield, L-block, Syringe shield, No shield during the injection, were each 58.5%, 20%, 9%, 12.3%. The TLD values according to utilization of radiation shield, using both L-block+Syringe Shield and L-block showed the lower TLD values, and Syringe shield only or No shield showed the higher TLD values. Second, the results of experiments according to PET study procedures measured the shielding rates as follows. The shielding rates during the distribution using L-block, L-block+Apron shield were measured 97.4%, 97.7%. The shielding rates during the $^{18}F$-FDG delivery to the injection room using mobile Syringe shield, Syringe holder, Syringe shield carrier were each 81.7%, 98.9%, 99.7%. The shielding rates during the injection using Syringe shield, L-block, L-block+Syringe shield were measured each 51.9%, 98.3%, 98.7%. The shielding rates of Apron were measured in each 30, 60, 90, 120, 150 cm distance. The measurement were each 16.9%, 14.2%, 16.6%, 17.1%, 18.1%, 18.6%. Conclusion: The most effective method for radiation shielding is to using L-block during the $^{18}F$-FDG distribution and Syringe shield carrier during in moving $^{18}F$-FDG. For the $^{18}F$-FDG injection, L-block+Syringe shield have to be used. The shielding effect of Apron has shown average 16.4%. According to the survey of questionnaire, the operators recognized well risk of the radiation exposure but, tended ignore in working. The radiation dose according to recognition of radiation exposure risk was not relevant. but radiation dose according to utilization of radiation shield lower the more use it. The main reason of no use of shielding devices is cumbersome, 55% of the respondents answered. I'm sure, by use of radiation shield in all PET procedure, radiation exposure will be reduced considerably.

  • PDF

Verification of the Protective Effect of Functional Shielding Cream for the Prevention of X-ray Low-dose Exposure (X-ray 저선량 피폭방지를 위한 기능성 차폐크림의 방어 효과 검증)

  • Seon-Chil Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.497-506
    • /
    • 2023
  • In the case of radiation workers in medical institutions, radiation exposure is made for patient protection and accurate procedures, so they have a problem of low dose exposure. Low-dose radiation exposure occurs mainly in parts of the body other than the Apron area, and the most frequent place is the skin of the back of the hand. In particular, since the medical personnel's hands require senses and fine movements during the procedure, they are defenseless in the radiation exposure area and are at risk of exposure. It can solve the problem of shielding such as lead gloves, and it is difficult to use by suggesting the activity of the hand during the procedure. To solve this problem, a shielding cream capable of obtaining a functional radiation protection effect was developed and its shielding performance was compared with lead equivalent of 0.1 mmPb. In the process of manufacturing shielding cream, the shielding performance was improved by adding a defoaming process to reduce air holes to increase the density of the cream. Therefore, the shielding cream using barium sulfate as the main material has a lower shielding rate than the lead plate, and in the realm of effective energy, it is 59%, At high effective energy, a difference of about 37% was shown, indicating that there is a functional radiation protection effect. The advantage is that it can be used directly on the skin, and it is considered that it can be used before wearing surgical gloves and has a permanent protective effect.

Aluminum, Copper and Lead as Shielding Materials in 6 MeV Electron Therapy (6 MeV 전자선 치료 시 차폐물질로서 알루미늄, 구리, 납)

  • Lee, Seung-Hoon;Cha, Seok-Yong;Lee, Sun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.457-466
    • /
    • 2014
  • During irradiation of lesions in cancer treatment with high energy electrons, normal tissue and critical organs are protected by the shielding material. Scattered radiation that generated the shielding materials affect the depth dose and atomic number. Therefore, we want to examine secondary particles and the scattered photons through calculation and its associated analysis, and compare the measurement for the aluminum, copper, and lead shielding substance of which thickness has 95% charge reduction. Dose change rate which effected scattering radiation was found to be +0.88% for material thickness, +0.43% for atomic number, and +19.70%, +15.20%, +12.40% for measurement, +25.00%, +15.10%, +13.70% for calculation on the aluminum, copper, and lead materials of which thickness has 95% charge reduction, respectively, As a result, we found that scattering rate was dependent on thickness than atomic number. In the dose increasing rate, scattered electrons are more important than scattered photon. For the above mentioned reasons, I think that high atomic number materials should be applied to reduce scattered radiation that generated with thickness effect.

Usefulness Evaluation and Fabrication of the Radiation Shield Using 3D Printing Technology (3차원 프린팅 기술을 이용한 차폐체 제작 및 유용성 평가)

  • Jang, Hui-Min;Yoon, Joon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.1015-1024
    • /
    • 2019
  • In the medical field, X-rays are essential in the diagnosis and treatment of diseases, and the use of X-rays continues to increase with the development of imaging technology, but X-rays have the disadvantage of radiation exposure. Although lead protection tools are used in clinical practice to protect against radiation exposure, lead is classified as a heavy metal and can cause harmful reactions such as lead poisoning. Therefore, the purpose of this study is to investigate the usefulness of the shield fabricated using materials of FDM (Fused Deposition Modeling) 3D printer. In order to confirm the filament's line attenuation factor, phantoms were fabricated using PLA, XT-CF20, Wood, Glow and Brass, and CT scan was performed. And the shielding sheet of 100 × 100 × 2 mm size was modeled, the dose and shielding rate was measured by using a diagnostic X-ray generator and irradiation dose meter, and the shielding rate with lead protection tools. As a result of the experiment, the CT number of the brass was measured to be the highest, and the shielding sheet was manufactured by using the brass. As a result of confirming with the diagnostic X-ray generator, the shielding rate was increased in the shielding sheet having a thickness of 6 mm upon X-ray irradiation under the condition of 100 kV and 40 mAs. It measured by 90% or more, and confirmed that the shielding rate is higher than apron 0.25 mmPb. As a result of this study, it was confirmed that the shield fabricated by 3D printing technology showed high shielding rate in the diagnostic X-ray region. there was.

RADIATION SHIELDING EVALUATION OF IP-2 PACKAGES FOR LOW- AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE

  • Kim, Min-Chul;Choi, Jong-Rak;Chung, Sung-Hwan;Ko, Jae-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.511-516
    • /
    • 2008
  • Korea Hydro & Nuclear Power Co., Ltd. (KHNP) developed new IP-2 packages to transport low- and intermediate-level radioactive waste (LILW) steel drums from nuclear power plants to a disposal facility in accordance with IAEA and Korean transport regulations of radioactive material. Radiation shielding evaluation of the packages was carried out to demonstrate compliance with the regulatory requirements for IP-2 packages of radioactive material. Dose rate limits of LILW drums contained in the packages were determined.

Research on Radiation Shielding Film for Replacement of Lead(Pb) through Roll-to-Roll Sputtering Deposition (롤투롤 스퍼터링 증착을 통한 납(Pb) 대체용 방사선 차폐필름 개발)

  • Sung-Hun Kim;Jung-Sup Byun;Young-Bin Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.441-447
    • /
    • 2023
  • Lead(Pb), which is currently mainly used for shielding purposes in the medical radiation, has excellent radiation shielding functions, but is continuously exposed to radiation directly or indirectly due to the harmfulness of lead itself to the human body and the inconvenience caused by its heavy weight. Research on shielding materials that are human-friendly, lightweight, and convenient to use that can block risks and replace lead is continuously being conducted. In this study, based on the commonly used polyethylene terephthalate (PET) film and the fabric material used in actual radiation protective clothing, a multi-layer thin film was realized through sputtering and vacuum deposition of bismuth, tungsten, and tin, which are metal materials that can shield radiation. Thus, a shielding film was produced and its applicability as a radiation shielding material was evaluated. The radiation shielding film was manufactured by establishing the optimized conditions for each shielding material while controlling the applied voltage, roll driving speed, and gas supply amount to manufacture the shielding film. The adhesion between the parent material and the shielding metal thin film was confirmed by Cross-cut 100/100, and the stability of the thin film was confirmed through a hot water test for 1 hour to measure the change of the thin film over time. The shielding performance of the finally realized shielding film was measured by the Korea association for radiation application (KARA), and the test conditions (inverse wide beam, tube voltage 50 kV, half layer 1.828 mmAl) were set to obtain an attenuation ratio of 16.4 (initial value 0.300 mGy/s, measured value 0.018 mGy/s) and damping ratio 4.31 (initial value 0.300 mGy/s, measured value 0.069 mGy/s) were obtained. by securing process efficiency for future commercialization, light and shielding films and fabrics were used to lay the foundation for the application of films to radiation protective clothing or construction materials with shielding functions.

A Study on Protection Performance of Radiation Protective Aprons classified by Manufacturers and Lead Equivalent using Over Tube Type Fluoroscopy (Over Tube Type의 투시촬영장치를 이용한 제조사별, 납당량별 엑스선방어 앞치마의 Protection 성능 평가에 관한 연구)

  • Song, Jong-Nam;Seol, Gwang-Wook;Hong, Seong-Il;Choi, Jeong-Gu
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.3
    • /
    • pp.135-141
    • /
    • 2011
  • If protective performance of apron cannot be good, radiation exposure of an guardian or a patient, a person engaged in radiation related industry cannot rise. Therefore, It will be evaluated protection performance to radiation protection aprons by manufacturers and lead equivalent more than 0.25mm lead equivalent. And, will show in the direction of application to clinic. The new aprons by manufacturers(H, X, I, J company) and lead equivalent(0.50mmPb, 0.35mmPb, 0.25mmPb) measured transmitted dose rate and shielding rate, uniformity under fluoroscopy and general radiography using to fluoroscopy system and digital radiography system, x-ray multifunction meter. The shielding rate measurement results, 0.5mmPb apron was Shielding rate of apron of a I company(fluoroscopy : 97.96%) was the best under six companies, and shielding rate of apron of a J company(fluoroscopy : 96.25%) was worst. 0.35mmPb Apron was Shielding rate of a I company(fluoroscopy : 96.79%) was the best under the three companies, and shielding rate of an H company(fluoroscopy : 95.81%) was the worst. 0.25mmPb Apron was Shielding rate of X company apron(fluoroscopy : 90.908%) was better than H company apron(fluoroscopy : 88.82%) than two companies. The uniformity measurement results, 0.5mmPb Aprons of X company(fluoroscopy : 0.13) and I company(fluoroscopy : 0.19) was the best under the six companies, and J company apron(fluoroscopy : 0.45) was the worst. 0.35mmPb. Along a manufacturer and lead equivalent performance of apron protection is distinguished certainly. Therefore, a patient, guardian or a person engaged in radiation related industry shall enforce experiment of a lot of ways defined or evaluation so that the maximum reduces radiation exposure. Buy the apron that protective performance is good, It will be performed through experiment and evaluation.