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a b s t r a c t

In order to further meet the requirements of weight, volume, and dose minimization for new nuclear
energy devices, the bare-bones multi-objective particle swarm optimization algorithm is used to auto-
matically and iteratively optimize the design parameters of radiation shielding system material, thick-
ness, and structure. The radiation shielding optimization program based on the bare-bones particle
swarm optimization algorithm is developed and coupled into the reactor radiation shielding multi-
objective intelligent optimization platform, and the code is verified by using the Savannah benchmark
model. The material type and thickness of Savannah model were optimized by using the BBMOPSO al-
gorithm to call the dose calculation code, the integrated optimized data showed that the weight
decreased by 78.77%, the volume decreased by 23.10% and the dose rate decreased by 72.41% compared
with the initial solution. The results show that the method can get the best radiation shielding solution
that meets a lot of different goals. This shows that the method is both effective and feasible, and it makes
up for the lack of manual optimization.
© 2023 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With their high energy density, significant power coverage, and
good environmental adaptability, nuclear reactors have been highly
valued worldwide since the 1950s. They have been successfully
applied in civil andmilitary fields such as nuclear power generation
and nuclear power propulsion [1]. Since the beginning of the 21st
century, with the demand for deep space exploration, deep-sea
operation, marine research, uncrewed area operation, disaster
area emergency response, and other particular fields, the devel-
opment of new nuclear energy devices such as space nuclear po-
wer, deep sea space stations, floating nuclear power plants, and
movable land-based nuclear power sources with reactors as the
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primary power source has been flourishing [2,3]. Meanwhile, the
rapid development of supercomputing, artificial intelligence, ma-
terials science, and other technologies has led to the development
of new nuclear energy devices with long life, digitalization, and
miniaturization. The United States, Russia, and other significant
countries consider new nuclear energy devices for “sea, land, air,
and space” as a disruptive innovation in the field of traditional
nuclear energy technology and an inevitable choice to form
asymmetric technology and strategic advantage [4,5,6] and put
forward higher requirements for existing technologies [7].

In order to protect the safety of personnel and the reliability of
reactor-related systems and equipment components, the neutron
and gamma radiation levels outside the reactor must be reduced to
as low as reasonably achievable (ALARA) levels through effective
radiation shielding. Compared with land-based stationary nuclear
power plant reactors, new nuclear energy devices for “sea, land, air
and sky” have new requirements for reactor miniaturization and
light weight in terms of mobility, maneuverability and payload. The
weight and volume of the reactor radiation shielding system are the
most important factors affecting miniaturization and light-
weighting [8,9]. The traditional design methods for nuclear reactor
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radiation shielding optimization are often based on expert experi-
ence, which may consume a lot of time and effort and may not
necessarily lead to a better result. Moreover, the multi-objective to
single-objective screening process requires human intervention,
fromwhich all human subjective experience is introduced, and this
multi-objective to single-objective optimization process can be
calculated only one final solution at a time, and the final selection is
limited. There are several studies applying intelligent optimization
algorithms to shield optimization. A genetic algorithm-based met-
aheuristic optimization technique for radiation shielding design is
presented by the University of South China [10]. A compact shield
that is organized radially is the goal of this effort. A multi-objective
optimization technique employing the PSO algorithm and the
shielding calculation code ANISN is proposed in the work of the
Chinese Academy of Sciences. This method is integrated with veri-
fication calculations for optimized systems using MCNP [11], etc..

This paper is based on the Bare-bones multi-objective particle
swarm optimization algorithm (BBMOPSO) to automatically opti-
mize the material, thickness, and structural parameters of a radi-
ation shielding system and quickly obtain the optimized radiation
shielding solution under the dose-volume-weight multi-objective
constraints, which can provide technical support for the design of
radiation shielding solutions for new nuclear energy devices.
2. Radiation shielding multi-objective optimization problem

The difficulty of dose-volume-weight multi-objective optimi-
zation in radiation shielding schemes is that their various objec-
tives are often in conflict with each other, and the optimization of
some design objectives will cause deterioration of other design
objectives. For example, the dose will decreasewhen increasing the
thickness of radiation shielding material or replacing the heavier
radiation shielding material. However, simultaneously, the volume
or weight will increase, so to a certain extent, the optimization of
multiple objectives simultaneously is unlikely to occur. Radiation
shielding solution optimization aims to have each target meet a
criterion as low as possible while meeting certain limits. The
following multi-objective optimization model was developed with
themathematical definition of the design variables and constraints,
considering the practical needs of new radiation shielding designs
for high performance [12].8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

min FðXÞ ¼ ðFRðXÞ; FW ðXÞ; FV ðXÞÞT

s:t:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

FRðXÞ ¼ RNðXÞ þ RPðXÞ � R0

FW ðXÞ ¼
XM
m¼1

Vm$rm � W0

FV ðXÞ ¼
XM
m¼1

Vm � V0

s:t:

8>>>>>>><
>>>>>>>:

X ¼ ðx1; x2; x3; :::; xn�1; xnÞ;X2R

Lj � xj � Ujðj ¼ 1;2; :::;nÞ

hk
�
xj
� � 0ðk ¼ 1;2; :::; qÞ

gl
�
xj
� ¼ 0ðl ¼ 1;2; :::; pÞ

(1)

In the above multi-objective optimization model, xj is the design
variable corresponding to a set of shielding optimization design so-
lutions; Lj and Uj are the upper and lower limits of the corresponding
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design parameters, respectively; X is the vector of design parameters
of a radiation shielding solution;R is the value space of the vectorX; gl
and hk denote the parameter constraints considering engineering
conditions and economy. The radiation dose, total weight, and total
volume of the shielding scheme are denoted by FR, FW, and FV,
respectively; R0, W0, and V0 are the reference constraint values for
radiation dose, weight, and volume, respectively; and F(X) is the
objective function of the radiation shielding design optimization
problem. RN is the neutron radiation dose outside the shielding layer,
and RP is the gamma rays radiation dose outside the shielding layer.
Vm is the volume of themth shielding layer in the shielding system; rm
is the density of themth shielding layer.

3. Principle of particle swarm algorithm

Particle Swarm Optimization (PSO) is a stochastic optimization
method proposed by Eberhart and Kennedy in 1995, which origi-
nated from the study of the predatory behavior of bird flocks
[13e16]. The PSO algorithm treats the solution to the optimization
problem as a bird in the search space and is abstracted as an in-
dividual with no weight and volume, hence the name “particle.”
Each particle has a fitness value determined by the optimized
function and searches the search space at a certain speed. Similar to
genetic algorithms, PSO algorithms are based on the concepts of
population and fitness, except that instead of evolving through
operators such as crossover and mutation, PSO finds the optimal
solution through collaboration and competition among individuals.
The other is the optimal solution found by the whole population so
far, called the global best position, or the optimal global particle. Its
basic PSO algorithm can be described as follows:

1) Initialize the position and velocity of the particle swarm.
2) Calculating the fitness of each particle in the swarm.
3) Update the optimal position pbest of each body of the particles.
4) Update the global best position gbest of all particles.
5) Update the position and velocity of each particle.
6) Determine if the number of iterations has been reached. If so,

terminate the run, otherwise return to step 2).
3.1. Multi-objective particle swarm optimization algorithm

The multi-objective particle swarm optimization algorithm
(MOPSO) is a method that uses the PSO optimization algorithm to
solve multi-objective optimization problems. Its underlying theory
is still based on the PSO algorithm, but the difference is that it deals
withmore than one object [17]. In the PSO algorithm, the individual
optimal position pbest and the global optimal position gbest jointly
lead the flight direction of each particle. However, for optimizing a
single objective, the optimal solution is often just a position in
space. The superiority of each particle solution can be compared by
directly comparing its fitness. However, for the optimization of
multiple objectives, there is no relationship between the superi-
ority of particle solutions in this case because of the possible
mutual non-domination between their particle solutions. There-
fore, when using MOPSO to solve multi-objective problems, it is
often necessary to construct an external storage set to keep the
non-dominated solutions searched for during the optimization
process and to update them. The algorithm description of MOPSO is
shown in Fig. 1 and can be described as follows:

1) Determine the dimension of the target, generate a population
containing several particles in the intra-dimensional search
space, and initialize the velocity and position of each particle in
the population as well as the external storage set.



Fig. 1. Optimization iteration strategy based on multi-objective particle swarm opti-
mization algorithm.
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2) Calculate the objective function value of each particle in the
population and save the non-inferior solution to the external
storage set according to the dominance relation; initialize the
individual optimal position pbest and the global optimal position
gbest of the particles, pbest being the initial position of the particle
and gbest being the best position of the initial population.

3) Change the positions of the particles based on the formulas for
updating their positions and speeds.

4) Calculating the target fitness value of the particle and
comparing it with the pbest of the previous iteration to readjust
the pbest.

5) Update the external storage set and determine the current
global optimal gbest.

6) Check to see if the number of iterations has been reached. If so,
output all the best solutions in an external file. Otherwise, go to
step 3.

Compared with other intelligent optimization algorithms,
MOPSO algorithm has the following advantages: 1. Without
crossover and mutation operation, MOPSO algorithm relies on
particle speed to complete the search, and only the optimal particle
can transmit information to other particles in iterative evolution, so
2217
the search speed is fast; 2.MOPSO algorithm has memory, and the
best historical position of particle population can be remembered
and transmitted to other particles; 3. Fewer parameters need to be
adjusted, simple structure, easy to achieve engineering; 4. Real
coding is adopted, which is directly determined by the solution of
the problem, and the number of variables in the solution of the
problem is directly taken as the dimension of the particle. Of
course, MOPSO algorithm still has the following shortcomings: 1.
Lack of dynamic adjustment of speed, easy to fall into local opti-
mum, resulting in low convergence accuracy and difficult conver-
gence; 2. Unable to effectively solve discrete and combinatorial
optimization problems; 3. For different problems, how to choose
appropriate parameters to achieve the best effect; 4. It cannot
effectively solve some non-cartesian coordinate system description
problems.
3.2. Bare-bones multi-objective particle swarm optimization
algorithm

Bare-bones multi-objective particle swarm optimization
(BBMOPSO) discards the update of particle velocity in MOPSO
compared to MOPSO. It replaces it with Gaussian sampling based
on the global best position gbest and the individual best position
pbest [18]. Based on the existing research, the update of particle
position is partially improved by using an adaptive particle update
strategy, choosing the update of external storage (pareto set) based
on the congestion distance and the selection of global best position
gbest, combined with the characteristics of multi-objective optimi-
zation problems in radiation shielding design, and designing a
Gaussian variational operator based on space-time, the specific
process of which is as follows.

In order to better balance the “global search” and “local search”
capabilities of the algorithm, an adaptive particle position update
strategy is used to update the positions of the particle swarm, as
shown in Equation (2-5).

xðtþ1Þ
i;j ¼

8><
>:
N
�
Pp � r �pðtÞi;j þPg � r �gðtÞi;j ;R�

���pðtÞi;j �gðtÞi;j

����;rand<0:5

gðtÞi;j ;rand�0:5

(2)

Pp ¼0:5þ 0:5
1þ exp ½bbðt � t0Þ�

(3)

Pg ¼0:5þ 0:5
1þ exp½ � bbðt � t0Þ�

(4)

R¼ 1
1þ exp ½bbðt � t0Þ�

(5)

xðtþ1Þ
i;j is the spatial position of the ith particle in the jth dimension

at themoment t þ 1, pðtÞi;j is the value of pbestt of the ith particle in the

jth dimension, gðtÞi;j is the value of gbest of the ith particle in the jth
dimension, Pp and Pg indicates the probability of searching around
the area around pbest and gbest. R is used to adjust the size of the
search radius, t0 is the turning point of the algorithm “global
search” and “local search” mode, take t0 ¼ tmax=2. t indicates the
current number of iterations, bb indicates the rate of change. Take
bb ¼ 20=tmax, tmax is the maximum number of iterations. The
change curves of Pp and Pg are shown in Fig. 2.

In order to ensure the population diversity of the Pareto non-
dominated solution set in the radiation shielding genetic search



Fig. 2. Search probability in the vicinity of pbest and gbest.
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process, the individual crowding distance is used for the selection
process. The basic idea is that by calculating the sum of distance
gaps between two individuals adjacent to each design objective in
the same non-dominated hierarchy and ranking them, the formula
is shown in equation (6).

Ii ¼
����Fiþ1;1 � Fi�1;1

Fmax;1 � Fmin;1

����þ
����Fiþ1;2 � Fi�1;2

Fmax;2 � Fmin;2

���� (6)

where i-1, i, and iþ1 denote the three adjacent radiation shielding
solutions in the population, F is the corresponding radiation
shielding design objective such as dose, weight, volume, etc., Fmax is
the maximum value corresponding to a radiation shielding design
objective in the current population, and Fmin is the minimum value
corresponding to a radiation shielding design objective in the
current population.

In order to avoid the premature aggregation of the population in
some better solution or a certain area and the loss of population
diversity, which leads the algorithm into the dilemma of local op-
timum, an operator based on spatio-temporal variation is designed.
When the variation probability is greater than some random
number, the variation range with Gaussian distribution as the
variable value is selected at the current position of the particle, and
if the variation probability is lower than this value, the spatial po-
sition of the particle remains unchanged, and the variation formula
is shown in equation (7-9).

xði; kÞ¼
��

x
�
i; k

�þ rg*mut range; Pm � rand
xði; kÞ; Pm < rand

(7)

Pm¼ð1� t=t maxÞ5=M (8)

mut range¼ðubðkÞ� lbðkÞÞ* Pm (9)

Pm is the probability of variation, rg follows a (0,1) normal dis-
tribution,mut range is the range of variation, ubðkÞ and lbðkÞ are the
upper and lower bounds of the kth dimensional decision variable,
respectively, and M is the variation parameter.

On the basis of the MOPSO algorithm, the BBMOPSO algorithm
updates the particle velocity update formula in the MOPSO algo-
rithm, and uses Gaussian sampling based on the global best
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position and the individual best position of the particle. Compared
with the standard MOPSO optimization algorithm, the BBMOPSO
algorithm is more compact and does not need to set control pa-
rameters such as inertia weight and learning factor. Therefore, it is
easier to implement and apply to solve practical problems.

4. Benchmark validation

In this paper, the BBMOPSO radiation shielding optimization
design procedure was developed based on the Multi-Objective
modeling and Simulation platform for Radiation Transport system
(MORST) developed by University of South China, and the appli-
cation validation of the procedure was carried out using the
Savannah reactor core model as the radiation shielding reference
model [19].

4.1. Benchmarking model as a reference

This paper is based on the radiation shielding design problem of
the Savannah reactor as a reference model. The structure of the
core, primary shielding layer and the position of the detector are
shown in Fig. 3. According to the literature reference, it is known
that the total height of the Savannah reactor core is 229.2 cm, of
which the active fuel zone is 167.6 cm, and the core diameter is
157.6 cm. In the validation process, the initial shielding of the
reactor is set at 10 layers. The initial shielding material, thickness,
and geometric structure design parameters are shown in Table 1,
and the selection of shieldingmaterial is shown in Table 2. Based on
the multi-objective intelligent optimization platform, the shielding
material, thickness, and geometric structure of the reference model
are optimized according to the initial shielding scheme, and then
find the optimized shielding scheme with integrated dose-volume-
weight multi-objective optimization.

There are two optimization objects selected in the optimization
process of axial radiation protection shielding. One is the radiation
shielding material, and the other is the thickness of each layer of
radiation shielding material. In this calculation, the coding method
of radiation materials is 1e23, a total of 23 numbers represents 23
kinds of materials, and the selected thickness range is 5e20 cm.
There are two different variables for the material and thickness of
each layer. Since BBMOPSO optimization method can only be
optimized in the real number range, it is a discrete variable for
material type, but it is very friendly for material thickness optimi-
zation. In view of the discrete problem of material types, Monte
Carlo method is adopted to take the idea of rounding in real
numbers, and random numbers are selected in (0,23]. If the random
number is greater than 0 and less than or equal to 1, the first ma-
terial is selected, and so on. The Gaussian sampling for the material
type and thickness variables is the Gaussian sampling corre-
sponding to the volume and weight.

In the optimization process, the reactor model is simplified to a
certain extent in this paper, and the reactor core is simplified to a
cylindrical, various homogeneous neutron source model, in which
the 235U fission energy spectrum is used. Using the MCX software
by Xi'an Jiaotong University, the count of particles injected into the
outer shield face is done with the corresponding count card. The
count of particles injected into the outer shield face is then con-
verted to the dose equivalent of the outer shield face using the
conversion factor of injection rate-dose rate given by NCRP-38 and
ANSI/ANS, and the shielding material is extracted from the MCX
software [20].

4.2. Radiation shielding optimization results

Based on the multi-objective intelligent optimization platform,



Fig. 3. Structural geometry of the core and primary shielding layer.

Table 1
Initial shielding design parameters for the reference model.

Shield number Outer radius/cm Material type Density/g$cm�3

1 88.3 H2O 1.00
2 98.8 Stainless Steel 307 7.92
3 108.5 H2O 1.00
4 118.6 Stainless Steel 307 7.92
5 128.5 H2O 1.00
6 138.0 Stainless Steel 307 7.92
7 148.6 Lead 8.43
8 158.8 Stainless Steel 307 7.92
9 168.8 Lead 8.43
10 178.8 Stainless Steel 307 7.92
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the material and structure modeling of the reference model using
the shielding design scheme in Table 1 is automatically transformed
into the MCNP computational model. Then the MCNP computa-
tional model is transformed into the MCX computational model
using a script to perform intelligent optimization of the radiation
shielding design scheme based on the BBMOPSO algorithm opti-
mization program module. The control parameters of BBMOPSO
are:

1) The population size of each generation is 100, the maximum
number of iterations is 100, and the variation parameter is set to
0.5.

2) The type of radiation shielding optimization is a mixture of
material type, thickness, and geometry.
Table 2
Material library for shielding optimization design selection.

Material type Density/g$cm�3 Material type

Water 1.00 Air
Beryllium 1.85 Carbon Steel
Stainless Steel 307 7.92 Stainless Steel 30
Aluminum 2.70 Stainless Steel 34
Lead 11.35 Nickel-chromium
Tungsten 19.35 Nickel-chromium
Gadolinium 7.90 Concrete
Polyethylene 0.93 Barite Concrete
Boron polyethylene 1.22 Calcium hydroxi
Lead Boron Polyethylene 3.60 Type 04 concrete
Boron steel 7.70 LS concrete
Tungsten Boron Aluminum 6.10
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3) The optimization objective of the radiation shielding solution is
a “dose-volume-weight” multi-constraint objective.

The optimization objective of the radiation shielding scheme is
“dose-volume-weight” multi-constraint.

The results of the radiation shielding optimization procedure
using the BBMOPSO algorithm for the baseline model are shown in
Fig. 4. It can be concluded from the figure that, based on the
BBMOPSO algorithm, the radiation shielding scheme gradually
converges to the Pareto optimal frontier as the number of genera-
tions increases, which proves the effectiveness and feasibility of the
radiation shielding optimization strategy based on the BBMOPSO
algorithm proposed in this paper. In order to compare the radiation
shielding design with the initial scheme, the dose rate, volume and
weight target values of the initial scheme are used as the starting
point, and a vertical line is set, and the area enclosed by the vertical
line and the coordinate axis is the better shielding design scheme.

By analyzing and interpreting the Pareto front solution set, four
different solutions are summarized, namely, the weight optimal
solution, the volume optimal solution, and the dose optimal solu-
tion. The results are shown in Table 3 (where the dose value is the
normalized dose). Since weight is equal to volume times density,
there is usually a positive linear relationship between weight and
volume. However, in this optimization, the material type was
optimized at the same time. Table 3 shows that the optimal weight
scheme and the optimal volume scheme are different, which ver-
ifies the effectiveness of this optimization process. The integrated
optimized data showed that the weight decreased by 78.77%, the
volume decreased by 23.10% and the dose rate decreased by 72.41%
Density/g$cm�3

1.205*10�3

7.82
4 7.92
7 7.92
-iron based solid solution strengthening alloy 1600 8.43
-iron based solid solution strengthening alloy 800 8.01

2.30
3.35

de stone 2.3
2.336
2.278



Fig. 4. Results of the optimized radiation shielding scheme under the initial scheme constraints of the reference.

Table 3
Table of results calculated under different conditions.

Scheme Weight/g Volume/cm3 Dose/(sv/h)

Initial shielding design 9.68015Eþ07 1.35634Eþ07 2.44405E-05
Weight optimal solution 4.87963Eþ06 5.79671Eþ06 4.13496E-05
Volume optimal solution 1.83942Eþ07 5.46539Eþ06 3.81151E-05
Dose optimal solution 4.26348Eþ07 1.29183Eþ07 2.61182E-06
Integrated optimal solution 2.05490Eþ07 1.04297Eþ07 6.74204E-06
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compared with the initial solution according to Table 3. The ge-
ometry and material arrangement of the overall optimization
scheme are shown in Table 4.
Table 4
Integrated optimal solution shielding design parameters for the reference model.

Shield number Outer radius/cm Material type Density/g$cm�3

1 93.65 Lead Boron Polyethylene 3.60
2 108.65 LS concrete 2.278
3 138.65 H2O 1.00
4 161.3 LS concrete 2.278
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5. Conclusion

Radiation shielding design multi-objective optimization is a
complex and nonlinear multi-parameter optimization combination
problem. The dose-volume-weight optimization problem in this
paper in radiation shielding design is complemented by the Bare-
bones multi-objective particle swarm optimization algorithm
based on radiation shielding multi-objective optimization. In order
to verify the effectiveness and feasibility of the BBMOPSO algorithm
in radiation shielding optimization, a radiation shielding optimi-
zation design module based on BBMOPSO was developed in the
reactor radiation shielding multi-objective intelligent optimization
platform, and the present method was initially validated using the
Savanna reactor. The material type and thickness of Savannah
model were optimized by using the BBMOPSO algorithm to call the
dose calculation code, the integrated optimized data showed that
the weight decreased by 78.77%, the volume decreased by 23.10%
and the dose rate decreased by 72.41% compared with the initial
solution. The validation results show that this method and pro-
cedure can achieve iterative optimization of radiation shielding



J. Lei, C. Yang, H. Zhang et al. Nuclear Engineering and Technology 55 (2023) 2215e2221
material, thickness, and geometry design parameters for new nu-
clear power devices and finally obtain an optimized radiation
shielding design that satisfies the dose-volume-weight multi-
objective constraint, which proves the effectiveness and feasibility
of the radiation shielding optimization method based on the
BBMOPSO algorithm in practical applications.
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