• Title/Summary/Keyword: Shielding material fusion

Search Result 12, Processing Time 0.03 seconds

Physical Properties of Medical Radiation Shielding Sheet According to Shielding Materials Fusion and Resin Modifier Properties (차폐 재료의 융합과 개질제 특성에 따른 의료방사선 차폐 시트 물리적 특성 고찰)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.99-106
    • /
    • 2018
  • The modifier proposed in this research is for enhancing the affinity of the glass component with the high polymer resin and the molecular weight. The particle packing, tensile strength and shielding performance of the shielding sheet made of the tungsten oxide were evaluated. The best effect can be obtained when 20% of the modifier PMMA used to improve the shielding performance and maintain the affinity and strength with the sealant is mixed. The fusion of the materials presented in this study and the mass production of the shielding sheet through the modifier are possible and will contribute to the production of lightweight shielding sheets in the future.

Analysis of Radiation Fusion Shielding Performance of Ytterbium Oxide, a Radiation Impermeable Substance (방사선 불투과성 물질 산화이테르븀(Ytterbium oxide)의 방사선 융합 차폐성능 분석)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.87-94
    • /
    • 2021
  • While the shielding substances of radiation shields in medical institutions are beginning to be replaced by environmentally friendly materials, radiation protection according to the shielding properties of environmentally friendly substances is becoming an important factor rather than the existing lead shielding properties. Tungsten and barium sulfate are representative shielding materials similar to lead, and are made in sheets or fiber form with eco-friendly materials. Ytterbium is an impermeable material used as a fluorine compound in the dental radiation field. This study aims to evaluate the shielding performance in the x-ray shielding area by comparing the shielding properties of ytterbium by energy band and that of existing eco-friendly materials. When three types of shielding sheets were fabricated and tested under the same process conditions, the shielding performance of the medical radiation area was about 5 % difference from tungsten. Furthermore, shielding performance was superior to barium sulfate. In the cross-sectional structure of the shielding sheet, there was a disadvantage that the arrangement of particles was not uniform. Ytterbium oxide showed sufficient potential as a medical radiation shielding material, and it is thought that it can improve the shielding performance by controlling the particle arrangement structure and particle size.

Prediction of Shielding Performance by Thickness by Comparing the Single and Laminated Structures of Lead-free Radiation Fusion Shielding Sheets (무연 방사선 융합 차폐시트 단일 구조와 적층 구조의 비교를 통한 두께별 차폐성능 예측)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.105-110
    • /
    • 2021
  • Radiation shielding of affinity material, which is widely used in medical institutions, is made in sheet form and is mainly applied to apron. Shielding performance is presented based on lead equivalent, and is presented as 0.25-0.50mmPb. In the case of shielding materials where lead is used as the main material, the shielding performance can be adjusted by thickness due to the excellent machinability of lead. However, eco-friendly shielding sheets are difficult to control shielding performance based on thickness criteria as shielding performance varies depending on the content of shielding materials, the properties of polymeric materials that are base materials, and the technical differences in the process. In this study, shielding sheets were manufactured based on thickness to solve these problems and the shielding performance was compared in this study. As a result, it was shown that the laminated structure shielding sheet was more effective.

Verification of the Possibility of Convergence Medical Radiation Shielding Sheet Using Eggshells (계란 껍데기를 이용한 융합 의료방사선 차폐시트의 가능성 검증)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.33-38
    • /
    • 2021
  • In order to manufacture a lightweight medical radiation shielding sheet, a new shielding material was studied. We tried to verify the possibility of a shielding material by mixing egg shell powder, which is thrown away as food waste at home, with a polymer material. Existing lightweight materials satisfy eco-friendly conditions, but there are difficulties in the economics of shielding materials due to the cost of the material refining process. This study aims to solve this problem by using egg shells, which are household waste. A 3 mm-thick shielding sheet was fabricated using HDPE, a polymer material, and particle distribution within the cross-section of the shielding sheet was also verified. The shape of the particles was rough and there were voids between the particles, and the average weight per unit area was 1.5 g/cm2. The shielding performance was around 20% in the low energy area and 10% in the high energy area, showing the possibility of a low-dose medical radiation shielding body.

Improved of Mechanical Properties and Functionalization of Polycarbonate by Adding Carbon Materials (탄소재료 첨가에 의한 Polycarbonate의 기계적 물성 향상 및 기능화에 관한 연구)

  • Kim, Jeong-Keun;Choi, Sun-Ho;Go, Sun-Ho;Kwac, Lee-Ku;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.59-67
    • /
    • 2020
  • Polycarbonate thermoplastic composite materials are anisotropic and exhibit physical properties in the longitudinal direction. Therefore, the physical properties depend on the type and direction of reinforcements. The thermal conductivity, electrical conductivity, and resin impregnation can be controlled by adding carbon nanotubes to polycarbonate resin. However, the carbon fiber used as a reinforcing material is expensive, interfacial adhesion issues occur, and simulation values are different from actual values, making it difficult to perform mathematical analysis. However, carbon nanotubes have advantages such as light weight, rigidity, impact resistance, and reduced number of parts compared to metals. Due to these advantages, it has been applied to various products to reduce weight, improve corrosion resistance, and increase impact durability. As the content of carbon nanotubes or carbon fibers increases, the mechanical properties and antistatic and electromagnetic shielding performance improve. It is expected that the amount of carbon nanotubes or carbon fibers can be optimized and applied to various industrial products.

Reliability Verification of FLUKA Transport Code for Double Layered X-ray Protective Sheet Design (이중 구조의 X선 차폐시트 설계를 위한 FLUKA 수송코드의 신뢰성 검증)

  • Kang, Sang Sik;Heo, Seung Wook;Choi, Il Hong;Jun, Jae Hoon;Yang, Sung Woo;Kim, Kyo Tae;Heo, Ye Ji;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.547-553
    • /
    • 2017
  • In the current medical field, lead is widely used as a radiation shield. However, the lead weight is very heavy, so wearing protective clothing such as apron is difficult to wear for long periods of time and there is a problem with the danger of lethal toxicity in humans. Recently, many studies have been conducted to develop substitute materials of lead to resolve these problems. As a substitute materials for lead, barium(Ba) and iodine(I) have excellent shielding ability. But, It has characteristics emitting characteristic X-rays from the energy area near 30 keV. For patients or radiation workers, shielding materials is often made into contact with the human body. Therefore, the characteristic X-rays generated by the shielding material are directly exposured in the human body, which increases the risk of increasing radiation absorbed dose. In this study, we have developed the FLUKA transport code, one of the most suitable elements of radiation transport codes, to remove the characteristic X-rays generated by barium or iodine. We have verified the reliability of the shielding fraction of the structure of the structure shielding by comparing with the MCPDX simulations conducted as a prior study. Using the MCNPX and FLUKA, the double layer shielding structures with the various thickness combination consisting of barium sulphate ($BaSO_4$) and bismuth oxide($Bi_2O_3$) are designed. The accuracy of the type shown in IEC 61331-1 was geometrically identical to the simulation. In addition, the transmission spectrum and absorbed dose of the shielding material for the successive x-rays of 120 kVp spectra were compared with lead. In results, $0.3mm-BaSO_4/0.3mm-Bi_2O_3$ and $0.1mm-BaSO_4/0.5mm-Bi_2O_3$ structures have been absorbed in both 33 keV and 37 keV characteristic X-rays. In addition, for high-energy X-rays greater than 90 keV, the shielding efficiency was shown close to lead. Also, the transport code of the FLUKA's photon transport code was showed cut-off on low-energy X-rays(below 33keV) and is limited to computerized X-rays of the low-energy X-rays. But, In high-energy areas above 40 keV, the relative error with MCNPX was found to be highly reliable within 6 %.

Occupational radiation exposure control analyses of 14 MeV neutron generator facility: A neutronic assessment for the biological and local shield design

  • Swami, H.L.;Vala, S.;Abhangi, M.;Kumar, Ratnesh;Danani, C.;Kumar, R.;Srinivasan, R.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1784-1791
    • /
    • 2020
  • The 14 MeV neutron generator facility is being developed by the Institute for Plasma Research India to conduct the lab scale experiments related to Indian breeding blanket system for ITER and DEMO. It will also be utilized for material testing, shielding experiments and development of fusion diagnostics. Occupational radiation exposure control is necessary for the all kind of nuclear facilities to get the operational licensing from governing authorities and nuclear regulatory bodies. In the same way, the radiation exposure for the 14 MeV neutron generator facility at the occupational worker area and accessible zones for general workers should be under the permissible limit of AERB India. The generator is designed for the yield of 1012 n/s. The shielding assessment has been made to estimate the radiation dose during the operational time of the neutron generator. The facility has many utilities and constraints like ventilation ducts, accessible doors, accessibility of neutron generator components and to conduct the experiments which make the shielding assessment challenging to provide proper safety for occupational workers and the general public. The neutron and gamma dose rates have been estimated using the MCNP radiation transport code and ENDF -VII nuclear data libraries. The ICRP-74 fluence to dose conversion coefficients has been used for the assessment. The annual radiation exposure has been assessed by considering 500 h per year operational time. The provision of local shield near to neutron generator has been also evaluated to reduce the annual radiation doses. The comprehensive results of radiation shielding capability of neutron generator building and local shield design have been presented in the paper along with detailed maps of radiation field.

Finite Element Analysis of Instrumented Posterior Lumbar Interbody Fusion Cages for Reducing Stress Shielding Effects: Comparison of the CFRP cage and Titanium cage (요추유합술에서 응력방패 현상 감소를 위한 케이지의 유한요소해석 : CFRP 케이지와 티타늄 케이지 비교 연구)

  • Kang, Kyung-Tak;Chun, Heoung-Jae;Kim, Ho-Joong;Yeom, Jin-S.;Park, Kyoung-Mi;Hwang, In-Han;Lee, Kwang-Ill
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.98-104
    • /
    • 2012
  • In recent years, degenerative spinal instability has been effectively treated with a cage. However, little attention is focused on the stiffness of the cage. Recent advances in the medical implant industry have resulted in the use of medical carbon fiber reinforced polymer (CFRP) cages. The biomechanical advantages of using different cage material in terms of stability and stresses in bone graft are not fully understood. A previously validated three-dimensional, nonlinear finite element model of an intact L2-L5 segment was modified to simulate posterior interbody fusion cages made of CFRP and titanium at the L4-L5 disc with pedicle screw, to investigate the effect of cage stiffness on the biomechanics of the fused segment in the lumbar region. From the results, it could be found that the use of a CFRP cage would not only reduce stress shielding, but it might also have led to increased bony fusion.

Preliminary Study for Development of Low Dose Radiation Shielding Material Using Liquid Silicon and Metalic Compound (액상 실리콘과 금속화합물을 융합한 저선량 방사선 차폐 소재 개발을 위한 사전연구)

  • Jang, Seo Goo;Han, Su Chul;Kang, Sung Jin;Lim, sung wook;Lee, Sung Soo
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.461-468
    • /
    • 2017
  • This study measured and compared the protective clothing using Pb used for shielding in a diagnostic X-ray energy range, and the shielding rates of X-ray fusion shielding materials using Si and $TiO_2$. For the experiment, a pad type shielding with a thickness of 1 mm was prepared by mixing $Si-TiO_2$, and the X-ray shielding rate was compared with 0.5 mmPb plate of The shielding rate of shielding of 0.5 mmPb plate 95.92%, 85.26 % based on the case of no shielding under each 60 kVp, 100 kVp tube voltage condition. When the shielding of $Si-TiO_2$ pad was applied, the shielding rate equal to or greater than 0.5 mmPb plate was obtained at a thickness of 11 mm or more, and the shielding rate of 100% or more was confirmed at a thickness of 13 mm in 60 kVp condition. When the shielding of $Si-TiO_2$ pad was applied, the shielding rate equal to or greater than 0.5 mmPb plate was obtained at a thickness of 17 mm or more, and a shielding rate of 0.5 mmPb plate was observed at a thickness of 23 mm in 100 kVp condition. Through the results of this study, We could confirm the possibility of manufacturing radiation protective materials that does not contain lead hazard using various metalic compound and liquid Si. This study shows that possibility of liquid Si and other metalic compound can harmonize easily. Beside, It is flexible and strong to physical stress than Pb obtained radiation protective closthes. But additional studies are needed to increase the shielding rate and reduce the weight.

아크 용접에서 구동력에 따른 열 및 물질 유동에 관한 연구

  • 김원훈;나석주
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.27-41
    • /
    • 1996
  • In this study the heat transfer and fluid flow of the molten pool in stationary gas tungsten arc welding using argon shielding gas were investigated. Transporting phenomena from the welding arc to the base material surface, such as current density, heat flux, arc pressure and shear stress acting on the weld pool surface, were taken from the simulation results of the corresponding welding arc. Various driving forces for the weld pool convection were considered, self-induced electromagnetic, surface tension, buoyancy, and impinging plasma arc forces. Furthermore, the effect of surface depression due to the arc pressure acting on the molten pool surface was considered. Because fusion boundary has a curved and unknown shape during welding, a boundary-fitted coordinate system was adopted to precisely describe the boundary for the momentum equation. The numerical model was applied to AISI 304 stainless steel and compared with the experimental results.

  • PDF