Browse > Article
http://dx.doi.org/10.15207/JKCS.2021.12.4.087

Analysis of Radiation Fusion Shielding Performance of Ytterbium Oxide, a Radiation Impermeable Substance  

Kim, Seon-Chil (Department of Biomedical Engineering, School of Medicine, Keimyung University)
Publication Information
Journal of the Korea Convergence Society / v.12, no.4, 2021 , pp. 87-94 More about this Journal
Abstract
While the shielding substances of radiation shields in medical institutions are beginning to be replaced by environmentally friendly materials, radiation protection according to the shielding properties of environmentally friendly substances is becoming an important factor rather than the existing lead shielding properties. Tungsten and barium sulfate are representative shielding materials similar to lead, and are made in sheets or fiber form with eco-friendly materials. Ytterbium is an impermeable material used as a fluorine compound in the dental radiation field. This study aims to evaluate the shielding performance in the x-ray shielding area by comparing the shielding properties of ytterbium by energy band and that of existing eco-friendly materials. When three types of shielding sheets were fabricated and tested under the same process conditions, the shielding performance of the medical radiation area was about 5 % difference from tungsten. Furthermore, shielding performance was superior to barium sulfate. In the cross-sectional structure of the shielding sheet, there was a disadvantage that the arrangement of particles was not uniform. Ytterbium oxide showed sufficient potential as a medical radiation shielding material, and it is thought that it can improve the shielding performance by controlling the particle arrangement structure and particle size.
Keywords
Ytterbium oxide; Tungsten; Barium sulfate; Radiation Fusion Shielding; Linear absorption coefficient;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ali Basheer Azeez, Kahtan S. Mohammed, A. M. Mustafa Al Bakri, Hana Ihsan Hasan & Omar A. Abdulkareem. (2014). Radiation Shielding Characteristics of Concretes Incorporates Different Particle Sizes of Various Waste Materials. Advanced Materials Research, 925, 190-194. DOI : 10.4028/www.scientific.net/AMR.925.190   DOI
2 J. P. McCaffrey, H. Shen, B. Downton & E. M. Hing. (2007) Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Medical physics, 34(2), 530-537. DOI : 10.1118/1.2426404   DOI
3 Neftali L. V. Carreno et al. (2012). YbF3/SiO2 Fillers as Radiopacifiers in A Dental Adhesive Resin. Nano-Micro Letters, 4(3), 189-196. DOI : 10.1007/BF03353713   DOI
4 B. P. Fox, K. Simmons-Potter, J. H. Simmons, W. J. Thomes Jr., R. P. Bambha & D. A. V. Kliner. (2007). Investigation of radiation-induced photodarkening in passive erbium-, ytterbium-, and Yb/Er co-doped optical fibers. Nanophotonics and Macrophotonics for Space Environments. 6713. DOI : 10.1117/12.735212   DOI
5 L. Jianhua et al. (2013). Large-Scale and Facile Synthesis of Biocompatible Yb-Based Nanoparticles as a Contrast Agent for In Vivo X-Ray Computed Tomography Imaging. Current Topics in Medicinal Chemistry, 13(4), 513-518. DOI : 10.2174/1568026611313040011   DOI
6 G. Panuccio, R. K. Greenberg, K. Wunderle, T. M. Mastracci, M. G. Eagleton & L. Davros. (2011). Comparison of Indirect Radiation Dose Estimates with Directly Measured Radiation Dose for Patients and Operators during Complex Endovascular Procedures. Journal of Vascular Surgery, 53(4), 885-894.e1. DOI : 10.1016/j.jvs.2010.10.106   DOI
7 F. M. Collares, F. A. Ogliari, G. S. Lima, V. R. C. Fontanella, E. Piva & S. M. W. Samuel. (2010). Ytterbium trifluoride as a radiopaque agent for dental cements. International Endodontic Journal, 43(9), 792-797. DOI : 10.1111/j.1365-2591.2010.01746.x   DOI
8 A. K. Singh, R. K. Singh, B. Sharma & A. K. Tyagi. (2017). Characterization and Biocompatibility Studies of Lead Free X-ray Shielding Polymer Composite for Healthcare Application. Radiat. Phys. Chem. 138, 9-15. DOI : 10.1016/j.radphyschem.2017.04.016   DOI
9 H. A. Maghrabi, A. Vijayan, F. Mohaddes, P. Deb & L. Wang. (2016). Evaluation of X-ray radiation shielding performance of barium sulphate-coated fabrics. Fibers and Polymers, 17(12), 2047-2054. DOI : 10.1007/s12221-016-5850-z   DOI
10 S. C. Kim. (2021). Prediction of Shielding Performance by Thickness by Comparing the Single and Laminated Structures of Lead-free Radiation Fusion Shielding Sheets. Journal of the Korea Convergence Society, 12(1), 105-110. DOI : 0.15207/JKCS.2021.12.1.105   DOI
11 D. Adliene, L. Gilys & E. Griskonis. (2020). Development and Characterization of New Tungsten and Tantalum Containing Composites for Radiation Shielding in Medicine. Nucl. Instrum. ethods Phys. Res. B, 467, 21-26. DOI : 10.1016/j.nimb.2020.01.027   DOI
12 S. C. Kim. (2018). Physical Properties of Medical Radiation Shielding Sheet According to Shielding Materials Fusion and Resin Modifier Properties. Journal of the Korea Convergence Society, 9(12), 99-106. DOI : 10.15207/JKCS.2018.9.12.099   DOI
13 N. J. AbuAlRoos, M. N. Azman, N. A. B. Amin & R. Zainon. (2020). Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Physica Medica. 78, 48-57. DOI : 10.1016/j.ejmp.2020.08.017   DOI
14 Nurul Z. Noor Azman et al. (2016). Effect of Bi2O3 particle sizes and addition of starch into Bi2O3-PVA composites for X-ray shielding. Applied Physics A, 122(9), 818-. DOI : 10.1007/s00339-016-0329-8   DOI
15 M. K. Badawy, MAppSci, P. D. PhD, R. C. MBBS. PhD & O. F. MBBS. PhD. (2016). A Review of Radiation Protection Solutions for the Staff in the Cardiac Catheterisation Laboratory. Heart, Lung and Circulation, 25(10), 961-967. DOI : 10.1016/j.hlc.2016.02.021   DOI
16 S. C. Kim & H. M. Jung. (2013). A Study on Performance of Low-Dose Medical Radiation Shielding Fiber (RSF) in CT Scans. International Journal of Technology, 4(2), 178-187. DOI : 10.14716/ijtech.v4i2.107   DOI
17 N. Aral, F. B. Nergis & C. Candan. (2015). An alternative X-ray shielding material based on coated textiles. Textile Research Journal, 86(8), 803-811. DOI : 10.1177/0040517515590409   DOI
18 Y. S. Choi, I. S. Kim, S. Y. Choi & E. I. Yang. (2019). Fundamental Properties and Radioactivity Shielding Characteristics of Mortar Specimen Utilizing CRT Waste Glass as Fine Aggregate. Journal of the Korea Institute for Structural Maintenance and Inspection, 23(1), 163-170. DOI : 10.11112/jksmi.2019.23.1.163   DOI
19 L. Seenappa, H. C. Manjunatha, B. M. Chandrika & H. Chikka. (2017). A Study of Shielding Properties of X-ray and Gamma in Barium Compounds. Journal of Radiation Protection and Research, 42(1), 26-32. DOI : 10.14407/jrpr.2017.42.1.26   DOI
20 Y. Liu, J. Liu, K. Ai, Q. Yuan & L. Lu. (2014). Recent advances in ytterbium-based contrast agents for in vivo X-ray computed tomography imaging: promises and prospects. Contrast Media Mol. Imaging, 9(1), 26-36. DOI : 10.1002/cmmi.1537   DOI
21 S. M. Midgley. (2004). A parameterization scheme for the x-ray linear attenuation coefficient and energy absorption coefficient. Physics in Medicine & Biology, 49(2), 307-325. DOI : 10.1088/0031-9155/49/2/009   DOI
22 J. W. Shin et al. (2014). Polyethylene/boron-containing composites for radiation shielding. Thermochimica Acta, 585(10), 5-9. DOI : 10.1016/j.tca.2014.03.039   DOI
23 S. E. Gwaily, H. H. Hassan, M. M. Badawy & M. Madani. (2002). Study of electrophysical characteristics of lead-natural rubber composites as radiation shields. POLYMER COMPOSITES, 23(6), 1068-1075. DOI : 10.1002/pc.10502   DOI
24 N. Papadopoulos et al. (2009). Comparison of Lead-free and Conventional x-ray aprons for Diagnostic Radiology. World Congress on Medical Physics and Biomedical Engineering, 25(3), 544-546. DOI : 10.1007/978-3-642-03902-7_155   DOI