DOI QR코드

DOI QR Code

Verification of the Possibility of Convergence Medical Radiation Shielding Sheet Using Eggshells

계란 껍데기를 이용한 융합 의료방사선 차폐시트의 가능성 검증

  • Kim, Seon-Chil (Department of Medical Engineering, Keimyung University)
  • 김선칠 (계명대학교 의용공학과)
  • Received : 2021.05.13
  • Accepted : 2021.06.20
  • Published : 2021.06.28

Abstract

In order to manufacture a lightweight medical radiation shielding sheet, a new shielding material was studied. We tried to verify the possibility of a shielding material by mixing egg shell powder, which is thrown away as food waste at home, with a polymer material. Existing lightweight materials satisfy eco-friendly conditions, but there are difficulties in the economics of shielding materials due to the cost of the material refining process. This study aims to solve this problem by using egg shells, which are household waste. A 3 mm-thick shielding sheet was fabricated using HDPE, a polymer material, and particle distribution within the cross-section of the shielding sheet was also verified. The shape of the particles was rough and there were voids between the particles, and the average weight per unit area was 1.5 g/cm2. The shielding performance was around 20% in the low energy area and 10% in the high energy area, showing the possibility of a low-dose medical radiation shielding body.

경량의 의료방사선 차폐시트를 제작하기 위해 새로운 차폐소재를 검토하였다. 가정에서 음식물 쓰레기로 버려지는 계란 껍데기 분말을 고분자 물질과 혼합하여 차폐재료의 가능성을 검증하고자 하였다. 기존의 경량 소재는 친환경의 조건을 만족하지만 주 재료 정제과정의 비용으로 인해 차폐시트 제작의 경제성에 어려움이 있다. 본 연구는 가정용 폐기물인 계란 껍데기를 이용하여 이러한 문제점을 해결하고자 한다. 고분자 물질인 HDPE를 이용하여 3 mm 두께의 차폐시트를 제작하였으며, 차폐시트 단면 내의 입자 분포상태도 분석하였다. 입자의 모양은 대체로 거칠게 구성되어 입자 간 공극이 있었으며, 단위 면적당 무게는 평균 1.5 g/cm2 로 나타났다. 차폐성능은 저에너지 영역에서는 20%대, 고에너지 영역에서는 10%대의 차폐성능을 보여 저선량 의료방사선 차폐시트의 재료로 가능성을 보여주었다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (Ministry of Education) (NRF. 2020R1I1A3070451).

References

  1. E. Al-Sarraya, I. Akkurta, K. Gunoglub, A. Evcinc & N.C. Bezira. (2017). Radiation Shielding Properties of Some Composite Panel. Acta physica polonica A, 132(3), 490-492. DOI : 10.12693/APhysPolA.132.490
  2. J. P. McCaffrey, H. Shen, B. Downton & E. Mainegra-Hing. (2007). Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Medical Physics, 34(2), 530-537. DOI : 10.1118/1.2426404
  3. E. Al-Sarray. (2018). Shield against beta radiation and gamma of polymer compunds, melanterite and eggshells. Journal Port science research, 1(1), 1-4. DOI : 10.13140/RG.2.2.17344.43523
  4. A. Alalawi et al. (2020). Influence of lead and zinc oxides on the radiation shielding properties of tellurite glass systems. Ceramics International, 46(11), 17300-17306. DOI : 10.1016/j.ceramint.2020.04.017
  5. M. S. Al-Buriahi & K. S. Mann. (2019). Raidiation shielding investigations for selected tellurite-based glasses belonging to the TNW system. Materials Research Express, 6(10), 105206-. DOI : 10.1088/2053-1591/ab3f85
  6. D. Adlienea, L. Gilysa & E. Griskonisb. (2020). Development and characterization of new tungsten and tantalum containing composites for radiation shielding in medicine. Nuclear Instruments and Methods in Physics Research B, 467, 21-26. DOI : 10.1016/j.nimb.2020.01.027
  7. N. J. AbuAlRoos, M. N. Azman, N. A. B. Amin & R. Zainon. (2020). Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Physica Medica, 78, 48-57. DOI : 10.1016/j.ejmp.2020.08.017
  8. H. Binici, O. Aksogan, A. H. Sevinc & E. Cinpolat. (2015). Mechanical and radioactivity shielding performances of mortars made with cement, sand and egg shells. Construction and Building Materials, 93, 1145-1150. DOI : 10.1016/j.conbuildmat.2015.05.020
  9. N. J. AbuAlRoosa, N. A. B. Amina & R. Zainon. (2019). Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiation Physics and Chemistry, 165, 108439-. DOI : 10.1016/j.radphyschem.2019.108439
  10. J. N. Z. Jasmine et al. (2019). Study of radiation attenuation ability of clay and cement mixture with added eggshell. Journal of Physics: Conference Series, 1497, 012010-. DOI : 10.1088/1742-6596/1497/1/012010
  11. U. G. Ezeh, J. C. Ezeh & B. I. Eziefula. (2018). Properties of seashell aggregate concrete: A review. Construction and Building Materials, 192, 287-300. DOI : 10.1016/j.conbuildmat.2018.10.096
  12. B. Ahmed, G. B. Shah, A. H. Malik, Aurangzeb & M. Rizwan. (2020). Gamma-ray shieldng characteristics of flexible silicone tungsten composites. Applied Radiation and Isotopes, 155, 108901-. DOI : 10.1016/j.apradiso.2019.108901
  13. E. Al-Sarray & A. Jabbar. (2018). Investigate the Ability of the Eggshell to Attenuate the Gamma and Beta Rays as Compared with Composite FeSO4.7H2O. Nuclear Science, 3(1), 16-22. DOI : 10.11648/j.ns.20180301.13
  14. H. Hamada, B. Tayeh, F. Yahaya, K. Muthusamy & A. Al-Attar. (2020). Effects of nano-palm oil fuel ash and nano-eggshell powder on concrete. Construction and Building Materials, 261, 119790-. DOI : 10.1016/j.conbuildmat.2020.119790
  15. B. L. F. Chin, S. Yusup, A. A. Shoaibi, P. Kannan, C. Srinivasakannan & S. A. Sulaiman. (2014). Comparative studies on catalytic and non-catalytic co-gasification of rubber seed shell and high density polyethylene mixtures. Journal of Cleaner Production, 70, 303-314. DOI : 10.1016/j.jclepro.2014.02.039
  16. S. C. Kim. (2021). Construction of a Medical Radiation-Shielding Environment by Analyzing the Weaving Characteristics and Shielding Performance of Shielding Fibers Using X-ray-Impermeable Materials. Applied Science, 11(4), 1705. DOI : 10.3390/app11041705
  17. M. Ketta & E. Tumova. (2016). Eggshell structure, measurements, and quality-affecting factors in laying hens: a review. Czech Journal of Animal Science, 61(7), 299-309. DOI : 10.17221/46/2015-CJAS
  18. M. M. H. Al Omari, I. S. Rashid, N. A. Qinna, A. M. Jaber & A. A. Badwan. (2016). Calcium Carbonate. Profiles of Drug Substances, Exipients and Related Methodolog. 41, 31-132. DOI : 10.1016/bs.podrm.2015.11.003