• Title/Summary/Keyword: Shielding analysis

Search Result 473, Processing Time 0.028 seconds

An Experimental Study on the Development of EMP Shielding Concrete According to the Types of Aggregates of Industrial By-products (산업부산물 골재 종류에 따른 EMP차폐 콘크리트 개발에 관한 실험적 연구)

  • Min, Tae-Beom
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.310-316
    • /
    • 2020
  • In this study, the stability and EMP shielding performance of metal-based industrial by-products aggregates with excellent conductivity and easy procurement to be used as concrete aggregates for EMP shielding are evaluated. The industrial by-products are electronic-arc-furnace oxidizing slag, copper smelting slag, and ferro-moldibdenum. The composition analysis of aggregates and aggregate stability are evaluated. As a result of the experiment, ferro-moldibdenum is shown to have l ow stability as an aggregate due to its high Free-CaO. The remaining aggregates are evaluated to be safe to use as aggregates for concrete. In addition, industrial by-products aggreagate-specimens excluding ferro-moldibdenum are shown higher compressive strength than the plain specimen. The recycle aggregates, electronic-arc-furnace oxidizing slag and copper smelting slag, are shown excellent EMP shielding performance, the EMP shielding performance is expected to increase if the average particle diameter of the aggregate is small or evenly distributed.

Analysis of Shielding Characteristics for Induction Phenomenon Attenuation of Large Capacity Wireless Power Transmission Environment (대용량 무선전력전송 환경 유도현상 감쇄를 위한 차폐 특성 분석)

  • Chae, Dong-Ju;Kim, Young-Seok;Jung, Jin-Soo;Lim, Hyun-Sung;Cho, Sung-Koo;Hong, Seong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1844-1851
    • /
    • 2017
  • As the capacity of the wireless power transmission increases, a higher supply current which may induce current in nearby conductive parts requires. Induced current may affect electric shock to the human body and malfunction of the electrical equipment. In order to prevent such induced phenomena as a risk factor, shielding is required between the source of the wireless power transmission and the conductive parts. The resonance frequency for the large capacity wireless power transmission has the wavelength of several hundred meters, so most environments are included in the near-field area. By wave impedance, the electric field has higher density in the near-field area and needs to be analyze for protecting. For this purpose, it is necessary to select a substance having a larger electric conductivity and optimized shielding structure. In this paper, an aluminum base shielding structure was presented to conduct experiments on thickness, position, and heat dissipation. In the 35 kW, 60 kHz environments, the optimized 5T Al base shielding structure attenuates the induced current to 43 %.

Analysis for Shielding Effectiveness of EMI Spray Coating Layers in 3D Structure (3차원 구조에서 EMI 스프레이 코팅막의 차폐효과 분석)

  • Hur, Jung;Lee, Won-Hui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.35-39
    • /
    • 2019
  • The shielding effectiveness (SE) of the EMI spray coating film was measured in a three-dimensional structure. The shielding effectiveness was measured by AST D4935 using coaxial type TEM cell. A standard sample of the cylindrical slab is fabricated to measure the shielding effectiveness using the ASTM D4935. At this time, spray coating was performed by bonding a three-dimensional structure with NAND flash memory to a standard sample. In the case of spray coating, it was uniformly coated not only on the horizontal plane but also on the vertical plane of the three-dimensional structure. As a result of measurement, shielding effectiveness of maximum 59 dB was measured in a three-dimensional structure similar to the case without three-dimensional structure. As a result, it was confirmed that the spray coating can be uniformed even in the three-dimensional structure.

Advanced radiation shielding materials: PbO2-doped zirconia ceramics synthesized through innovative sol-gel method

  • Islam G. Alhindawy;Mohammad. W. Marashdeh;Mamduh. J. Aljaafreh;Mohannad Al-Hmoud;Sitah Alanazi;K. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2444-2451
    • /
    • 2024
  • This work demonstrates a new sol-gel approach for synthesizing PbO2-doped zirconia using zircon mineral precursors. The streamlined methodology enables straightforward fabrication of the doped zirconia composites. Comprehensive materials characterization was performed using XRD, SEM, and TEM techniques to analyze the crystal structure, microstructure, and morphology. Quantitative analysis of the XRD data provided insights into the nanoscale crystallite sizes achieved, along with their relationship to lattice imperfections. Furthermore, the gamma-ray shielding capacity for the PbO2-doped zirconia samples was estimated by the Monte Carlo simulation, which proves an increase in the gamma ray shielding properties by raising the Pb concentration. The linear attenuation coefficient increased between 0.467 and 0.499 cm-1 (at 0.662 MeV) by increasing the Pb content between 11 and 21 wt%. By increasing the Pb content to 21 wt%, the synthesized composites' lead equivalent thickness reaches 2.49 cm. The radiation shielding properties for the synthesized composites revealed a remarkable performance against low and intermediate γ-ray photons, with radiation shielding capacity of 37.3 % and 21.4 % at 0.662 MeV and 2.506 MeV, respectively. As a result, the developed composites can be employed as an alternative shielding material in hospitals and radioactive zones.

Boundary Element Analysis of Magnetic Shielding Effects of Shield Cup in Electron Gun (경계요소법을 이용한 전자총 Shield Cup의 자기차폐 특성해석)

  • Go, Chang-Seop;Jeong, Gwan-Sik;Han, Song-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.291-296
    • /
    • 2000
  • Recently large size color TV and computer monitor are very popular and a lot techniques are being developed to get a high quality picture on the screen through reducing the convergence error among the red, green and blue beams and achieving a high focusing. One of the techniques is considering the mutual effects of the components of the Brown tube. The magnetic deflection yoke, especially, stands immediately next to the electron gun and generates the leakage magnetic fields at the electron gun which affects the trajectories of the electron beams inside the gun. Hence a shield cup made of thin conducting plate is located at the end of electron gun in order to shield the leakage flux from the deflection yoke. Since the red, green and blue beams are placed unsymmetrically the shielding effects of the shield cup on the beams are not same and eddy current controller, made of thin conducting plate, is auxiliary placed inside the shield cup. In this paper a transient magnetic field analysis algorithm is developed using boundary element method, and applied to the analysis of the shielding effects of the eddy current controller of shield cup in an electron gun.

  • PDF

Neutronics analysis of the ion cyclotron resonance heating antenna of the China Fusion Engineering Test Reactor

  • Gaoxiang Wang;Chengming Qin;Shanliang Zheng;Yongsheng Wang;Kun Xu;Huiqiang Ma
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3236-3241
    • /
    • 2024
  • Ion cyclotron resonance heating (ICRH) is an important auxiliary heating method applied to the China Fusion Engineering Test Reactor, which can effectively heat the ions and electrons in plasma. Owing to the harsh nuclear environment, neutronic analyses are required to verify tritium self-sufficiency and neutron-shielding requirements. In this study, a neutronics analysis of the ICRH antenna was conducted using the COre and System integrated engine for Reactor Monte Carlo (cosRMC) code to estimate the neutron flux, radiation damage, nuclear heating, gas generation rate of key components, and tritium breeding ratio (TBR), providing data support for the subsequent optimization of the shielding design. In addition, the neutron flux of the coils around the antenna was calculated to prevent the entry of neutrons that damage the magnetic field coils through the gaps between the port plugs and antenna, and the shielding effects of the port-plug antenna on the surrounding components were analyzed. Finally, the results obtained using the cosRMC and MCNP codes were compared, which and presented good agreement, thus verifying the reliability of the neutronic analysis using the cosRMC code.

Analysis of Radioactive Characterization in the Medical Linear Accelerator Shielding Wall Using Monte Carlo Method (몬테칼로법을 이용한 의료용 선형가속기 차폐벽의 방사화 특성 분석)

  • Lee, Dong-Yeon;Park, Eun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.10
    • /
    • pp.758-765
    • /
    • 2016
  • This study analyzed for the radioactive shielding wall, which shields the medical linear accelerator. This allows to evaluate the level of waste with respect to the shield wall, which accounts for more than half of the cost of dismantling later linac facility. In addition, by analyzing the waste processing method according we discuss the way to obtain the benefits in terms of dismantling cost. Results of the simulate, the amount sufficient to screen the amount of neutron radiation occurring in the shielding wall linac was measured. And neutron activation analysis results were analyzed nuclides more than about 20. This analysis was in excess of that, $^{24}Na$, $^{45}Ca$, $^{59}Fe$ nucleus paper deregulation concentration. The value is reduced is greater the deeper the depth of the shielding wall concentration. Based on this, three specific areas (E, F, G) was estimated to be impossible to landfill or recycling. The rest area was estimated to be buried or recycled if possible more than a predetermined depth.

A Study on the Shielding Analysis in Vitrification Facility of Low-and Intermediate Level Radioactive Wastes ($\cdot$저준위 방사성폐기물 유리화 시설의 차폐해석에 관한 연구)

  • 이창민;이건재;지평국;박종길;하종현;송명재
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.524-531
    • /
    • 2003
  • The usefulness of vitrification technology for low- and intermediate- level radioactive wastes was demonstrated because of high volume reduction, mechanical and chemical stability of final waste forms. Thus, a construction of the commercial vitrification plant Is currently promoted. Due to the high radiation level of the waste, shielding analysis has to be carried out for safe design in a vitrification facility. Because there has been no experience in the construction and operation of the vitrification facility in Korea, in this study, in order to get some information for help the detailed design and plan for operation in vitrification facility, shielding analysis for each facility in pilot plant is carried out by using source term from established study. For the selection of the shielding material, concrete was chosen compared to the lead because of economic advantage, weight consideration, and thermal resistance.

  • PDF

EMI shielding effectiveness and mechanical properties of MWCNTs-reinforced biodegradable epoxy matrix composites

  • Yim, Yoon-Ji;Chung, Dong Chul;Park, Soo-Jin
    • Carbon letters
    • /
    • v.22
    • /
    • pp.36-41
    • /
    • 2017
  • Biodegradable epoxy (B-epoxy) was prepared from diglycidyl ether of bisphenol A and epoxidized linseed oil. The mechanical properties of B-epoxy composites reinforced with multi-walled carbon nanotubes (MWCNTs/B-epoxy) were examined by employing dynamic mechanical analysis, critical stress intensity factor ($K_{IC}$) tests, and impact strength tests. The electromagnetic interference shielding effectiveness (EMI-SE) of the composites was evaluated using reflection and absorption methods. Mechanical properties of MWCNTs/B-epoxy were enhanced with an increase in the MWCNT content, whereas they deteriorated when the MWCNT content was >5 parts per hundred resin (phr). This can likely be attributed to the entanglement of MWCNTs with each other in the B-epoxy due to the presence of an excess amount of MWCNTs. The highest EMI-SE obtained was ~16 dB for the MWCNTs/B-epoxy composites with a MWCNT content of 13 phr at 1.4 GHz. The composites (13 phr) exhibited the minimum EMI-SE (90%) when used as shielding materials at 1.4 GHz. The EMI-SE of the MWCNTs/B-epoxy also increased with an increase in the MWCNT content, which is a key factor affecting the EMI-SE.

SHIELD DESIGN OF CONCRETE WALL BETWEEN DECAY TANK ROOM AND PRIMARY PUMP ROOM IN TRIGA FACILITY

  • Khan, M J H;Rahman, M;Ahmed, F U;Bhuiyan, S I;Haque, A;Zulquarnain, A
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.4
    • /
    • pp.190-193
    • /
    • 2007
  • The objective of this study is to recommend the radiation protection design parameters from the shielding point of view for concrete wall between the decay tank room and the primary pump room in TRIGA Mark-II Research Reactor Facility. The shield design for this concrete wall has been performed with the help of Point-kernel Shielding Code Micro-Shield 5.05 and this design was also validated based on the measured dose rate values with Radiation Survey Meter (G-M Counter) considering the ICRP-60 (1990) recommendations for occupational dose rate limit ($10{\mu}Sv/hr$). The recommended shield design parameters are: (i) thickness of 114.3 cm Ilmenite-Magnetite Concrete (IMC) or 129.54 cm Ordinary Reinforced Concrete (ORC) for concrete wall A (ii) thickness of 66.04 cm Ilmenite-Magnetite Concrete (IMC) or 78.74 cm Ordinary Reinforced Concrete (ORC) for concrete wall B and (iii) door thickness of 3.175 cm Mild Steel (MS) on the entrance of decay tank room. In shielding efficiency analysis, the use of I-M concrete in the design of this concrete wall shows that it reduced the dose rate by a factor of at least 3.52 times approximately compared to ordinary reinforced concrete.