DOI QR코드

DOI QR Code

An Experimental Study on the Development of EMP Shielding Concrete According to the Types of Aggregates of Industrial By-products

산업부산물 골재 종류에 따른 EMP차폐 콘크리트 개발에 관한 실험적 연구

  • 민태범 (성신양회(주) 기술연구소)
  • Received : 2020.08.10
  • Accepted : 2020.09.02
  • Published : 2020.09.30

Abstract

In this study, the stability and EMP shielding performance of metal-based industrial by-products aggregates with excellent conductivity and easy procurement to be used as concrete aggregates for EMP shielding are evaluated. The industrial by-products are electronic-arc-furnace oxidizing slag, copper smelting slag, and ferro-moldibdenum. The composition analysis of aggregates and aggregate stability are evaluated. As a result of the experiment, ferro-moldibdenum is shown to have l ow stability as an aggregate due to its high Free-CaO. The remaining aggregates are evaluated to be safe to use as aggregates for concrete. In addition, industrial by-products aggreagate-specimens excluding ferro-moldibdenum are shown higher compressive strength than the plain specimen. The recycle aggregates, electronic-arc-furnace oxidizing slag and copper smelting slag, are shown excellent EMP shielding performance, the EMP shielding performance is expected to increase if the average particle diameter of the aggregate is small or evenly distributed.

본 연구에서는 도전성이 우수하고 조달이 쉬운 금속계열 산업부산물을 EMP차폐용 콘크리트 골재로 사용하기 위해 골재의 안정성 평가 및 EMP차폐 성능평가를 실시하였다. 산업부산물 골재는 전기로산화슬래그, 동제련슬래그, 페로몰디브덴을 선정하여 사용하였으며 골재의 성분 분석과 골재안정성 평가를 실시하였다. 또한 산업부산물 골재를 콘크리트 골재로 사용하여 기본 물성 평가 및 EMP 차폐 성능 평가를 실시하였다. 실험 결과 산업부산물 골재중 페로몰리브덴은 Free-CaO가 높아 골재로서의 안정성이 낮게 나타났으며 나머지 골재들은 콘크리트용 골재로 사용하기에 무방한 것으로 평가 되었다. 또한 압축강도 실험 결과 페로몰디브덴을 제외한 산업부산물 골재를 제외한 실험체는 Plain 실험체 보다 높은 압축강도를 발현하였다. EMP차폐 성능 평가 결과 EMP 차폐성능이 높은 산업부산물 골재는 전기로산화슬래그, 동제련슬래그 이며 골재의 평균입경이 작거나 균일하게 분포되면 차폐성능은 증가할 것으로 사료된다.

Keywords

References

  1. Chen, B., Wu, K., Yao, W. (2004). Conductivity of carbon fiber reinforced cement-based composites, Cement and Concrete Composites, 26(4), 291-297. https://doi.org/10.1016/S0958-9465(02)00138-5
  2. Choi, H.J., Park, J.H., Min, T.B., Jang, H.O., Lee, H.S. (2019). An experimental study on the evaluation of EMP shielding performance of concrete applied with ATMSM using Zn-Al alloy wire, The Proceedings of the Korea Electromagnetic Engineering Society, 19(3), 209-218.
  3. Chun, C.S. (2016). North Korean nuclear crisis after the fifth nuclear test and South Korea's future strategy, The Journal of Strategic Studies, 23(3), 7-38 [in Korean]. https://doi.org/10.1080/01402390008437798
  4. Chung, D.D.L. (2001). Electromagnetic interference shielding effectiveness of carbon materials, Carbon, 39(2), 279-285. https://doi.org/10.1016/S0008-6223(00)00184-6
  5. Dai, Y., Sun, M., Liu, C., Li, Z. (2010). Electromagnetic Wave Absorbing Characteristics of Carbon Black Cement-based, Composites, 32(7), 508-513.
  6. Dou, Z., Wu, G., Huang, X., Sun, D., Jiang, L. (2007). Electromagnetic shielding effectiveness of aluminum ally-fly ash composites, Composites Part A: Applied Science and Manufacturing, 38(1), 186-191. https://doi.org/10.1016/j.compositesa.2006.01.015
  7. Jin, L., Haiyan, Z., Ping, L., Xijiang, Y., Guoxun, Z. (2014). The electromagnetic shielding effectiveness of a low-cost and transparent stainless steel fiber/silicone resin composite, IEEE Transactions on Electromagnetic Compatibility, 56(2), 328-334. https://doi.org/10.1109/TEMC.2013.2280140
  8. Kim, H.G., Lee, H.K. (2008). Development of electromagnetic wave absorbing/Shielding construction materials, Magazine of the Korea Concrete Institute, 20(6), 70-74 [in Korean]. https://doi.org/10.22636/MKCI.2008.20.6.70
  9. Kim, H.S. (2013). Reality and developmental methods of EMP threats, Defense & Technology, 414, 98-103.
  10. Kim, Y.J., Yi, C.K. (2015). The UHF wave shielding effectiveness of mortar with conductive inclusions, Journal of the Architectural Institute of Korea Structure & Construction, 31(4), 103-110 [in Korean]. https://doi.org/10.5659/JAIK_SC.2015.31.4.103
  11. Lee, W.G. (2013). EMP protecting measurements and required technology, The Proceedings of the Korea Electromagnetic Engineering Society, 24(1), 79-96 [in Korean].
  12. Xu, Z., Hao, H. (2014). Electromagnetic interference shielding effectiveness of aluminum foams with different porosity, Journal of Alloys and Compounds, 617(25), 207-213. https://doi.org/10.1016/j.jallcom.2014.07.188