• Title/Summary/Keyword: Shield tunnel

Search Result 261, Processing Time 0.028 seconds

Shield TBM disc cutter replacement and wear rate prediction using machine learning techniques

  • Kim, Yunhee;Hong, Jiyeon;Shin, Jaewoo;Kim, Bumjoo
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.249-258
    • /
    • 2022
  • A disc cutter is an excavation tool on a tunnel boring machine (TBM) cutterhead; it crushes and cuts rock mass while the machine excavates using the cutterhead's rotational movement. Disc cutter wear occurs naturally. Thus, along with the management of downtime and excavation efficiency, abrasioned disc cutters need to be replaced at the proper time; otherwise, the construction period could be delayed and the cost could increase. The most common prediction models for TBM performance and for the disc cutter lifetime have been proposed by the Colorado School of Mines and Norwegian University of Science and Technology. However, design parameters of existing models do not well correspond to the field values when a TBM encounters complex and difficult ground conditions in the field. Thus, this study proposes a series of machine learning models to predict the disc cutter lifetime of a shield TBM using the excavation (machine) data during operation which is response to the rock mass. This study utilizes five different machine learning techniques: four types of classification models (i.e., K-Nearest Neighbors (KNN), Support Vector Machine, Decision Tree, and Staking Ensemble Model) and one artificial neural network (ANN) model. The KNN model was found to be the best model among the four classification models, affording the highest recall of 81%. The ANN model also predicted the wear rate of disc cutters reasonably well.

Effects of structural characteristics of screw conveyor on spewing during EPB shield tunnelling

  • Xiaochun Zhong;Siyuan Huang;Rongguo Huai;Yikang Hu;Xuquan Chen
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.571-580
    • /
    • 2023
  • During EPB shield tunnelling, construction speed and safety are severely affected by spewing. In this study, a theoretical seepage model is established to capture of the effects of screw conveyor geometry and turbulent flow on spewing. Experimental test results are used to verify the proposed theoretical seepage model. It is found that the seepage is greatly affected by the length of screw conveyor and soil permeability. The proposed model can increase the screw conveyor length and reduce soil discharge sections simultaneously, the permeability of treated muck thus decreases by one order of magnitude. By using the proposed theoretical seepage model, the criterion of critical soil permeability used to identify spewing is proposed. When the water head applied at tunnel face reaches 40 m and 50 m, the critical permeability coefficients of treated muck should be less than 10-5 m/s and 10-6 m/s to avoid spewing. For a given permeability coefficient of soil, the water flow rate is overestimated if structural characteristics of screw conveyor is not considered. Consequently, the occurrence of spewing is greatly overestimated, which increases construction cost substantially.

OPTMAL LICATION OF ACOUSTIC SENSORS AND OPTIMAL OBSERVATION POLICY FOR DETECTING ANIMALIUS PLANE OBJECY IN SHIELD CINSTRUCTION METHOD

  • Yamane, Kenji;Tanaka, Shogo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.240-243
    • /
    • 1995
  • In excavating tunnels, shield tunneling machines having many cutters on their cutter planes are used. Not many observation data being available in the detection system, optimal observation policy is very important. From this viewpoint, we previously considered the optimal location of acoustic sensors on the cutter plane and also the optimal observation policy for the case where three receiving transducers were used, and showed that the optimal sensor location was given as arbitrary equally-spaced points on the cutter plane circle, and that the optimal rotating angles were also found to be arbitrary. In application, however, it is often difficult to locate sensors at arbitrary positions or to use three sensors from the viewpoints of machine structure and cost. This paper considers the optimal observation policy for detecting anomlous plane objects for the case where two receiving transducers are used and the case where three receiving transducers are located only on a diameter of the cutter plane.

  • PDF

A study on the damage of cutter bit due to the rotation speed of shield TBM cutter head in mixed ground (복합지반에서의 쉴드 TBM 커터헤드의 회전속도에 따른 커터비트 손상에 관한 실험적 연구)

  • Kang, Eun-Mo;Kim, Yong-Min;Hwang, In-Jun;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.403-413
    • /
    • 2015
  • This paper presents the cutter bit damage due to the rotation speed of shield TBM cutter head in the mixed ground. The efficient of cutter bits and disk cutter are very important for tunnelling in mixed ground. In particular, this research is focused on the performance of cutter bits during excavation in mixed ground which is consist of the weathered soil and rock formation. In order to carry out this research, the experimental works are prepared performed by using the scaled shield TBM cutter bits evaluation machine developed. The mixed ground is prepared considering with a scale effect of tunnel size. Three different rotation speeds of shield TBM cutter head (i.e. 2, 3, 4 rpm) are applied in the experimental work. The drag forces acting on the cutter bits are measured at each cutter bit during rotation of cutter head. It is also analysed the variation of drag forces due to the rotation speed of shield TBM cutter head. The results of this research are clearly shown that the drag forces acting on the cutter bits are jumped up at the boundary between weathered soil and rock. It is also indicated that the jamping drag forces are increased with increasing the rotation speed of the cutter head. It is found from the research that the higher rotation speed of shield TBM cutter head will be high risk in the mixed ground. It is, therefore, suggested that the use of lower rotation speed of shield TBM cutter head is recommended for reducing the cutter bit damage in practice.

A study on the face pressure control and slurry leakage possibility using shield TBM model test (축소 모형실험을 통한 토피조건별 이수압식 쉴드 TBM의 챔버압 및 이수분출 가능성 평가)

  • Koh, Sungyil;Shin, Hyunkang;La, You-Sung;Jung, Hyuksang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.277-291
    • /
    • 2020
  • Shield TBM is a tunnelling method that has a wider range of applications in the poor ground condition compared to conventional tunnels (Drill and Blast). Currently, a 13.3 m large-diameter slurry shield TBM is preparing for construction to pass under the Han River. Shield TBM is divided into slurry and EPB shield TBM, and management items during construction are different depending on each characteristic. In this paper, the equipment type, origin, application case and trouble case were analyzed for slurry shield TBM, which is mainly constructed in soft ground. In addition, 2D and 3D model tests were conducted on the condition of soil depth for the possibility of slurry leakage into front of the equipment, with appropriate chamber pressure. Based on this paper, it proposed to provide basic and reference data for proper excavation surface pressure and chamber pressure during construction of slurry shield TBM under soft ground conditions, and proposed measures to minimize stability and environmental decline due to slurry ejection.

Preventing disaster system of the subaqueous tunnel under the Han river in the Bundang railway (분당선 한강 하저터널의 방재시스템)

  • Kim Yong-Il;Hwang Nak-Yeon;Yoon Young-Hoon;Jie Hong-Keun;Jang Sung-Wook;Kim Dong-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.308-327
    • /
    • 2004
  • As use of tunnels and subways increase there also are accidents proportionate to it. Daegu Subway Station fire, Hongjimoon tunnel fire led people to be conscious of disaster protection and as a result, there is a trend to adopt standards for fire protection. Accordingly, this thesis is focused on investigating various fire and water protection related issues for subaqueous tunnel under Ran river. The thesis developed evacuation and disaster prevention plan as fire level increases and have identified the suitability of disaster prevention through evacuation and fire simulation, countermeasure of a water leakage during construction and operation considering the subaqueous tunnel. And we selected EPB shield TBM equipment considering the ground condition and effect of boring hole, and accomplished reasonable water protection design through setting goals using event-tree method, as well as examining model test of boring hole and flooding in heavy rain. Also included structured total system consist of water leakage sensing system, water protection gate, pumping system and fire protection system to respond systematically in emergency.

  • PDF

Visualization analysis of the progressive failure mechanism of tunnel face in transparent clay

  • Lei, Huayang;Zhai, Saibei;Liu, Yingnan;Jia, Rui
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.193-205
    • /
    • 2022
  • The face stability of shield tunnelling is the most important control index for safety risk management. Based on the reliability of the transparent clay (TC) model test, a series of TC model tests under different buried depth were conducted to investigate the progressive failure mechanism of tunnel face. The support pressure was divided into the rapid descent stage, the slow descent stage and the basically stable stage with company of the local failure and integral failure in the internal of the soil during the failure process. The relationship between the support pressure and the soil movement characteristics of each failure stage was defined. The failure occurred from the soil in front of the tunnel face and propagated as the slip zone and the loose zone. The fitted formulas were proposed for the calculation of the failure process. The failure mode in clay was specified as the basin shape with an inverted trapezoid shape for shallow buried and appeared as the basin shape with a teardrop-like shape in deep case. The implications of these findings could help in the safety risk management of the underground construction.

Model Experiments and Behavior Analyses of The Tunnel Support Using TDR Sensor (TDR센서를 이용한 터널 지보재의 모형 실험과 거동해석)

  • Park, Min-Cheol;Han, Heui-Soo;Cho, Jae-Ho;Yang, Nam-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.9
    • /
    • pp.35-45
    • /
    • 2011
  • This paper is to analyze the behaviors of tunnel support by TDR(Time Domain Reflectometry) sensor using electrical pulse. To analysis the behaviors of tunnel support, Copper tape as sensing materials was studied for on-site installation. Copper tape to the top of the glass tape, foam tape, and shielding the lower part was used electromagnetic shield sheet. For a high sensitivity to load and fill out the measurement noise emissions has been developed for the production of materials. This sensing material through the tunnel model tests for the change by surcharge load in TDR data were analyzed. Varing stiffness and support of conditions were determined the change of TDR data through PVC pipe tunnel section model tests. By comparing TDR data and finite element analysis, the behaviors of the tunnel support materials were analyzed qualitatively.

CONSTRUCTION MANAGEMENT OF TUNNELLING IN SEVERE GROUNDWATER CONDITION

  • Young Nam Lee;Dae Young Kim
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.655-661
    • /
    • 2005
  • For a hydro power plant project, the headrace tunnel having a finished diameter of 3.3m was constructed in volcanic rocks with well-developed vertical joint and high groundwater table. The intake facility was located 20.3 km upstream of the powerhouse and headrace tunnel of 20 km in length and penstock of 440 m in height connected the intake and the powerhouse. The typical caldera lake, Lake Toba set the geology at the site; the caving of the ground caused tension cracks in the vertical direction to be developed and initial stresses at the ground to be released. High groundwater table(the maximum head of 20 bar) in the area of well-connected vertical joints delayed the progress of tunnel excavation severely due to the excessive inflow of groundwater. The excavation of tunnel was made using open-shield type TBM and mucking cars on the rail. High volume of water inflow raised the water level inside tunnel to 70 cm, 17% of tunnel diameter (3.9 m) and hindered the mucking of spoil under water. To improve the productivity, several adjustments such as modification of TBM and mucking cars and increase in the number of submersible pumps were made for the excavation of severe water inflow zone. Since the ground condition encountered during excavation turned out to be much worse, it was decided to adopt PC segment lining instead of RC lining. Besides, depending on the conditions of the water inflow, rock mass condition and internal water pressure, one of the invert PC segment lining with in-situ RC lining, RC lining and steel lining was applied to meet the site specific condition. With the adoption of PC segment lining, modification of TBM and other improvement, the excavation of the tunnel under severe groundwater condition was successfully completed.

  • PDF

Development of disc cutter wear sensor prototype and its verification for ensuring construction safety of utility cable tunnels (전력구 터널 건설안전 확보를 위한 디스크커터 마모측정시스템 시작품 개발 및 성능검증)

  • Jung Joo Kim;Hee Hwan Ryu;Seung Woo Song;Seung Chul Do;Ji Yun Lee;Ho Young Jeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.91-111
    • /
    • 2024
  • Most of utility cable tunnels are constructed utilizing shield TBM as part of the underground transmission line project. The TBM chamber is the only space inside the tunnel that encounters rock and soil, and is the place with the highest frequency of accident exposure, such as collapse and collision accidents. Since there is currently no way to measure the disc cutter wear from outside the chamber, frequent inspection by workers is essential. Accordingly, in this study, in order to prevent safety accidents inside the TBM chamber and expect the effect of shortening the construction period by reducing the number of chamber openings, the concept of disk cutter wear measurement technology was established and a prototype was produced. By considering prior technology and determining that magnetic sensors are most suitable for the excavation environment, wear measurement sensor package were developed integrating magnetic sensors, wireless communication modules, power supply, external casing, and monitoring systems. To verify the performance of the prototype in an actual excavation environment, a full-scale tunnelling test was performed using a 3.6 m EPB shield TBM. Based on the full-scale tests, five prototypes were operated normally among eight prototypes. It was analyzed that sensor measurement, wireless communication, and durability performance were secured within a maximum thrust of 3,000 kN and a rotation speed of 1.5 RPM.