• Title/Summary/Keyword: Shield

Search Result 1,461, Processing Time 0.031 seconds

Effect of a CPR Educational Face Shield on Pathogenic Bacteria Protection (심폐소생술 교육용 페이스 쉴드의 병원성 세균 차단 효과)

  • Kim, Eun-Mee;Shim, Gyu-Sik;Roh, Sang-Gyun
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.137-141
    • /
    • 2016
  • Cross contamination between a patient and rescuer or CPR trainees can occur when performing mouth to mouth ventilation during cardiopulmonary resuscitation (CPR). On the other hand, there has been a lack of research on the filtration efficacy of face shields that are designed to protect people from cross-contamination. This study aims to secure the safety of rescuers from communicable diseases in pre-hospital emergency settings and CPR trainees by verifying the protective effects of face shields. The FA shield and CM Shield were used to verify the safety. The bacteria collected from filters used by CPR trainees were incubated. These incubated bacteria were smeared onto the new filters, and were then blown out through the filters using a Bag Valve Mask (BVM) and the pathogens at the front and the back of the filters were checked. While the FA shield was effective in preventing the transmission of pathogens, the CM shield did not prevent the transmission of pathogens. Therefore, some of face shields that received national certification are ineffective in preventing cross-contamination. Accordingly, it is necessary to verify the safety of other face shields used domestically.

Radiation dose reduction effectiveness of a male gonadal shield during 128-MDCT using Glass Detector (유리선량계를 이용한 128-MDCT 검사시 생식선 차폐 선량 감소 효과)

  • Kim, Chang-Gyu
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.237-242
    • /
    • 2013
  • When abdomen and pelvic were scanned with 128 channel MDCT, the gonadal exposure dose was measured with and without gonadal shield and the obtained images were evaluated. As a result, during abdominal MDCT scan, the gonadal exposure dose was measured $16.5{\pm}0.5$ mGy when the gonad shield was not used, and it was $7.5{\pm}0.3$ mGy when the large gonad shield($650m^2$) was used, which showed the effect of reduction in the gonadal exposure dose by 54%. During pelvic MDCT scan, the gonadal exposure dose was $9.5{\pm}0.3$ mGy when the gonad shield was not used, and it was $2.8{\pm}0.2$ mGy when the large gonard shield($650m^2$) was used, which showed the effect of reduction in the gonadal exposure dose by 70%. The images were obtained when using the gonad shield and when not using it during MDCT scan, and as a result of analyzing them with 5-point Likert scale, in the abdominal image, it was 4.1 points irrespective of whether using the gonad shield or not. And also, in pelvic scan, it was 1.2 points when the gonad shield was used, and 4.1 points when it was not used. With the results above, it is considered that during the abdominal 128-MDCT scan, by using the gonad shield, the images should be obtained without being degraded and the exposure dose must be reduced.

Effects of Fan-Aspirated Radiation Shield for Temperature Measurement in Greenhouse Environment

  • Yang, Seung-Hwan;Lee, Chun-Gu;Kim, Joon-Yong;Lee, Won-Kyu;Ashtinai-Araghi, A.;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.245-251
    • /
    • 2012
  • Purpose: Provision of accurate temperature measurement is an essential element to ensure a precise control in greenhouse environment. This study was organized to compare the effects of six solar radiation shields with different shapes for temperature measurement and find the most appropriate shield for greenhouse environment. Methods: A fan-aspirated radiation shield was designed and manufactured. Using the fan-aspirated radiation shield and five other shapes i.e., the cup shape, horizontal pipe, vertical pipe, parallel boards and commercial shields, temperature measurement was conducted over the lawn surface as well as greenhouse indoor environment. The measurement height varied at 0.5, 1.0 and 1.5 m from the floor. Results: The measured temperatures by the fan-aspirated radiation shield were 1.30-$1.49^{\circ}C$ lower than the values recorded by other different-shaped shields at 1.5 m of measurement height. As the measurement height decreases, observed differences between measured temperatures of the fan-aspirated radiation shield and other shields demonstrate a declining trend. However, at low measurement heights, the radiation emitted from the bottom surface would be the source of error in temperature measurement. Conclusions: The fan-aspirated radiation shield is a required tool for exact measurement of air temperature in greenhouse temperature control.

Development of Thruster Heat Shield for Satellite (인공위성 추력기 열차폐막 개발)

  • Lee Hae-Heon;Jang Ki-Won;Lee Jae-Won;Yu Myoung-Jong;Lee Kyun-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.27-30
    • /
    • 2005
  • Hanwha Corporation succeeded in domestic development of thruster heat shield for KOMPSAT-2 propulsion subsystem partly. Thruster heat shield, one of the main components of DTM, is designed to prevent the critical radiative heat exchange between thruster and satellite during firing. To overcome the manufacturing difficulties, an electro-forming process is preferred to classical welding process. In this case, an inner diameter of a new shield will be decreased a little due to the change of manufacturing process. The interference problem between thruster nozzle and heat shield was investigated through structural analysis by KARI. Hanwha manufactured heat shield based on the analysis results. In this paper, full development process is described for design, analysis, manufacturing of heat shield.

  • PDF

Shielding 140 keV Gamma Ray Evaluation of Dose by Depth According to Thickness of Lead Shield (140 keV 감마선 차폐 시 납 차폐체 두께에 따른 깊이별 선량 평가)

  • Kim, Ji-Young;Lee, Wang-Hui;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.129-134
    • /
    • 2018
  • The present study made a phantom for gamma ray of 140 keV radiated from $^{99m}Tc$, examined shielding effect of lead by thickness of the shielding material, and measured surface dose and depth dose by body depth. The OSL Nano Dot dosimeter was inserted at 0, 3, 15, 40, 90, and 180 mm depths of the phantom, and when there was no shield, 0.2 mm lead shield, 0.5 mm lead shield, The depth dose was measured. Experimental results show that the total cumulative dose of dosimeters with depth is highest at 366.24 uSv without shield and lowest at 94.12 uSv with 0.5 mm lead shield. The shielding effect of 0.2 mm lead shielding was about 30.18% and the shielding effect of 0.5 mm lead shielding was 74.30%, when the total sum of the accumulated doses of radiation dosimeter was 100%. The phantom depth and depth dose measurements showed the highest values at 0 mm depth for all three experiments and the dose decreases as the depth increases. This study proved that the thicker a shielding material, the highest its shielding effect is against gamma ray of 140 keV. However, it was known that shielding material can't completely shield a body from gamma ray; it reached deep part of a human body. Aside from the International Commission on Radiation Units and Measurements (ICRU) recommending depth dose by 10 mm in thickness, a plan is necessary for employees working in department of nuclear medicine where they deal with gamma ray, which is highly penetrable, to measure depth dose by body depth, which can help them manage exposed dose properly.

Shielding design and analyses of the cold neutron guide hall for the KIPT neutron source facility

  • Zhong, Zhaopeng;Gohar, Yousry
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.989-995
    • /
    • 2018
  • Argonne National Laboratory of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have cooperated on the development, design, and construction of a neutron source facility. The facility was constructed at Kharkov, Ukraine, and its commissioning process is underway. The facility will be used for researches, producing medical isotopes, and training young nuclear specialists. The neutron source facility is designed with a provision to include a cryogenically cooled moderator system-a cold neutron source (CNS). This CNS provides low-energy neutrons, which will be used in the scattering experiment and material structures analysis. Cold neutron guides, coated with reflective material for the low-energy neutrons, will be used to transport the cold neutrons to the experimental site. The cold neutron guides would keep the cold neutrons within certain energy and angular space concentrated inside, while most of the gamma rays and high-energy neutrons are not affected by the cold neutron guides. For the KIPT design, the cold neutron guides need to extend several meters outside the main shield of the facility, and curved guides will also be used to remove the gamma and high-energy neutron. The neutron guides should be installed inside a shield structure to ensure an acceptable biological dose in the facility hall. Heavy concrete is the selected shielding material because of its acceptable performance and cost. Shield design analysis was carried out for the CNS guide hall. MCNPX was used as the major computation tool for the design analysis, with neutron and gamma dose calculated separately. Weight windows variance reduction technique was also used in the shield design. The goal of the shield design is to keep the total radiation dose below the $5.0{\mu}Sv/hr$ guideline outside the shield boundary. After a series of iterative MCNPX calculations, the shield configuration and parameters of CNS guide hall were determined and presented in this article.

Development and Evaluation of a Thimble-Like Head Bolus Shield for Hemi-Body Electron Beam Irradiation Technique

  • Shin, Wook-Geun;Lee, Sung Young;Jin, Hyeongmin;Kim, Jeongho;Kang, Seonghee;Kim, Jung-in;Jung, Seongmoon
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.152-157
    • /
    • 2022
  • Background: The hemi-body electron beam irradiation (HBIe-) technique has been proposed for the treatment of mycosis fungoides. It spares healthy skin using an electron shield. However, shielding electrons is complicated owing to electron scattering effects. In this study, we developed a thimble-like head bolus shield that surrounds the patient's entire head to prevent irradiation of the head during HBIe-. Materials and Methods: The feasibility of a thimble-like head bolus shield was evaluated using a simplified Geant4 Monte Carlo (MC) simulation. Subsequently, the head bolus was manufactured using a three-dimensional (3D) printed mold and Ecoflex 00-30 silicone. The fabricated head bolus was experimentally validated by measuring the dose to the Rando phantom using a metal-oxide-semiconductor field-effect transistor (MOSFET) detector with clinical configuration of HBIe-. Results and Discussion: The thimble-like head bolus reduced the electron fluence by 2% compared with that without a shield in the MC simulations. In addition, an improvement in fluence degradation outside the head shield was observed. In the experimental validation using the inhouse-developed bolus shield, this head bolus reduced the electron dose to approximately 2.5% of the prescribed dose. Conclusion: A thimble-like head bolus shield for the HBIe- technique was developed and validated in this study. This bolus effectively spares healthy skin without underdosage in the region of the target skin in HBIe-.

Field test and numerical study of the effect of shield tail-grouting parameters on surface settlement

  • Shao, Xiaokang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Qi, Weiqiang
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.509-522
    • /
    • 2022
  • Tail-grouting is an effective measure in shield engineering for filling the gap at the shield tail to reduce ground deformation. However, the gap-filling ratio affects the value of the gap parameters, leading to different surface settlements. It is impossible to adjust the fill ratio indiscriminately to study its effect, because the allowable adjustment range of the grouting quantity is limited to ensure construction site safety. In this study, taking the shield tunnel section between Chaoyanggang Station and Shilihe Station of Beijing Metro Line 17 as an example, the correlation between the tail-grouting parameter and the surface settlement is investigated and the optimal grouting quantity is evaluated. This site is suitable for conducting field tests to reduce the tail-grouting quantity of shield tunneling over a large range. In addition, the shield tunneling under different grouting parameters was simulated. Furthermore, we analyzed the evolution law of the surface settlement under different grouting parameters and obtained the difference in the settlement parameters for each construction stage. The results obtained indicate that the characteristics of the grout affect the development of the surface settlement. Therefore, reducing the setting time or increasing the initial strength of the grout could effectively suppress the development of surface subsidence. As the fill ratio decreases, the loose zone of the soil above the tunnel expands, and the soil deformation is easily transmitted to the surface. Meanwhile, owing to insufficient grout support, the lateral pressure on the tunnel segments is significantly reduced, and the segment moves considerably after being removed from the shield tail.

Pipeline deformation caused by double curved shield tunnel in soil-rock composite stratum

  • Ning Jiao;Xing Wan;Jianwen Ding;Sai Zhang;Jinyu Liu
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.131-143
    • /
    • 2024
  • Shield tunneling construction commonly crosses underground pipelines in urban areas, resulting in soil loss and followed deformation of grounds and pipelines nearby, which may threaten the safe operation of shield tunneling. This paper investigated the pipeline deformation caused by double curved shield tunnels in soil-rock composite stratum in Nanjing, China. The stratum settlement equation was modified to consider the double shield tunneling. Moreover, a three dimensional finite element model was established to explore the effects of hard-layer ratio, tunnel curvature radius, pipeline buried depth and other influencing factors. The results indicate the subsequent shield tunnel would cause secondary disturbance to the soil around the preceding tunnel, resulting in increased pipeline and ground surface settlement above the preceding tunnel. The settlement and stress of the pipeline increased gradually as buried depth of the pipeline increased or the hard-layer ratio (the ratio of hard-rock layer thickness to shield tunnel diameter within the range of the tunnel face) decreased. The modified settlement calculation equation was consistent with the measured data, which can be applied to the settlement calculation of ground surface and pipeline settlement. The modified coefficients a and b ranged from 0.45 to 0.95 and 0.90 to 1.25, respectively. Moreover, the hard-layer ratio had the most significant influence on the pipeline settlement, but the tunnel curvature radius and the included angle between pipeline and tunnel axis played a dominant role in the scope of the pipeline settlement deformation.

Usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit (안와 주변 방사선 치료 시 수정체 피폭선량 감소를 위한 2차 차폐의 유용성 평가)

  • Kwak, Yong Kuk;Hong, Sun Gi;Ha, Min Yong;Park, Jang Pil;Yoo, Sook Hyun;Cho, Woong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.87-95
    • /
    • 2015
  • Purpose : This study presents the usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit. Materials and Methods : We accomplished IMRT treatment plan similar with a real one through the computed treatment planning system after CT simulation using human phantom. For the secondary shield, we used Pb plate (thickness 3mm, diameter 25mm) and 3 mm tungsten eye-shield block. And we compared lens dose using OSLD between on TPS and on simulation. Also, we irradiated 200 MU(6 MV, SPD(Source to Phantom Distance)=100 cm, $F{\cdot}S\;5{\times}5cm$) on a 5cm acrylic phantom using the secondary shielding material of same condition, 3mm Pb and tungsten eye-shield block. And we carried out the same experiment using 8cm Pb block to limit effect of leakage & transmitted radiation out of irradiation field. We attached OSLD with a 1cm away from the field at the side of phantom and applied a 3mm bolus equivalent to the thickness of eyelid. Results : Using human phantom, the Lens dose on IMRT treatment plan is 315.9cGy and the real measurement value is 216.7cGy. And after secondary shield using 3mm Pb plate and tungsten eye-shield block, each lens dose is 234.3, 224.1 cGy. The result of a experiment using acrylic phantom, each value is 5.24, 5.42 and 5.39 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Applying O.S.B out of the field, each value is 1.79, 2.00 and 2.02 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Conclusion : When secondary shielding material is used to protect critical organ while irradiating photon, high atomic number material (like metal) that is near by critical organ can be cause of dose increase according to treatment region and beam direction because head leakage and collimator & MLC transmitted radiation are exist even if it's out of the field. The attempt of secondary shield for the decrease of exposure dose was meaningful, but untested attempt can have a reverse effect. So, a preliminary inspection through Q.A must be necessary.

  • PDF