• Title/Summary/Keyword: Sherwood number

Search Result 55, Processing Time 0.032 seconds

INFLUENCE OF SLIP CONDITION ON RADIATIVE MHD FLOW OF A VISCOUS FLUID IN A PARALLEL POROUS PLATE CHANNEL IN PRESENCE OF HEAT ABSORPTION AND CHEMICAL REACTION.

  • VENKATESWARLU, M.;VENKATA LAKSHMI, D.;DARMAIAH, G.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.333-354
    • /
    • 2016
  • The present investigation deals, heat and mass transfer characteristics with the effect of slip on the hydromagnetic pulsatile flow through a parallel plate channel filled with saturated porous medium. Based on the pulsatile flow nature, exact solution of the governing equations for the fluid velocity, temperature and concentration are obtained by using two term perturbation technique subject to physically appropriate boundary conditions. The expressions of skin friction, Nusselt number and Sherwood number are also derived. The numerical values of the fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. By increasing the slip parameter at the cold wall the velocity increases whereas the effect is totally reversed in the case of shear stress at the cold wall.

Effects of Non-Absorbable Gases on the Absorption Process of Aqueous LiBr Solution Film in a Vertical Tube (I) (수직관내 리튬브로마이드 수용액막의 흡수과정에 대한 비흡수가스의 영향)

  • Kim, Byeong-Ju;Lee, Chan-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.489-498
    • /
    • 1998
  • Among the heat/mass exchange units composing an absorption system, the absorber, where the refrigerant vapor is absorbed into the liquid solution is the one least understood. In the present study, the effects of non-absorbable gas on the absorption process of aqueous lithium bromide solution falling film inside a vertical tube were experimentally investigated. In the range of film Reynolds number of 30 ~ 195, heat and mass transfer characteristics were investigated as a function of non-absorbable gas volumetric concentration, 0.2 ~ 20%. An increase of non-absorbable gas volumetric concentration degraded the mass transfer rate dramatically in the absorption process. The reduction of mass transfer rate was significant for the addition of small amount of non-absorbable gas to the pure vapor. At film Reynolds number of 130, an increase of non-absorbable gas concentration from 0.2 to 6.0% resulted in the decrease of mass transfer rate by 36% and 20% of non-absorbable gas by 59%. However the decrease of film Nusselt number with the increase of volumetric concentration of non absorbable gas was relatively smaller than the decrease of Sherwood number. Critical film Reynolds number was identified to exist for the maximum heat and mass transfer regardless of the volumetric concentration of non-absorbable gases.

Study on High Performance and Compact Absorber Using Small Diameter Heat Exchanger Tube

  • Yoon Jung-In;Phan Thanh Tong;Moon Choon-Geun;Kim Eun-Pil;Kim Jae-Dol;Kang Ki-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.463-473
    • /
    • 2006
  • The effect of tube diameter on heat and mass transfer characteristics of absorber in absorption chiller/heater using LiBr solution as a working fluid has been investigated by both of numerical and experimental study to develop a high performance and compact absorber. The diameter of the heat exchanger tube inside absorber was changed from 15.88mm to 12.70mm and 9.52mm. In numerical study a model of vapor pressure drop inside tube absorber based on a commercial 20RT absorption chiller/heater was performed. The effect of tube diameter, longitudinal pitch, vapor Reynolds number, longitudinal pitch to diameter ratio on vapor pressure drop across the heat exchanger tube banks inside absorber have been investigated and found that vapor pressure drop decreases as tube diameter increases, longitudinal pitch increases, vapor Reynolds number decreases and longitudinal pitch to diameter ratio increases. In experimental study, a system includes a tube absorber, a generator, solution distribution system and cooling water system was set up. The experimental results shown that the overall heat transfer coefficient, mass transfer coefficient. Nusselt number and Sherwood number increase as solution flow rate increases. In both of study cases, the heat and mass transfer performance increases as tube diameter decreases. Among three different tube diameters the smallest tube diameter 9.52mm has highest heat and mass transfer performance.

Detailed Measurement of Heat/Mass Transfer in a Rotating Two-Pass Duct (I) - Effects of Rib Tubulators - (이차 냉각 유로를 가진 회전덕트에서 열/물질전달 특성 (I) - 요철 설치에 따른 영향 -)

  • Kim, Kyung-Min;Kim, Sang-In;Kim, Yun-Young;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.910-920
    • /
    • 2004
  • The heat/mass transfer characteristics in a rotating two-pass duct with and without rib turbulators are investigated in the present study. The square duct has a hydraulic diameter ($D_h$) of 26.7 mm, and $1.5\;mm{\times}1.5\;mm$ square $90^{\circ}$-rib turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The Reynolds number based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number is varied from 0.0 to 0.20. In the smooth duct, the curvature of the $180^{\circ}$-turn produces Dean vortices that enhance heat/mass transfer in the post-turn region. When rib turbulators are installed, heat/mass transfer is augmented 2.5 times higher than that of the smooth duct since the main flow is turbulated by reattaching and separating in the vicinity of the duct surfaces. The duct rotation results in heat/mass transfer discrepancy so that Sherwood number ratios are higher on the trailing surface in the first-pass and on the leading surface in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent heat/mass transfer characteristics also change. As the rotation number increases, the heat/mass transfer discrepancy enlarges.

Theoretical fabrication of Williamson nanoliquid over a stretchable surface

  • Sharif, Humaira;Hussain, Muzamal;Khadimallah, Mohamed Amine;Ayed, Hamdi;Taj, Muhammad;Bhutto, Javed Khan;Mahmoud, S.R.;Iqbal, Zafer;Ahmad, Shabbir;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.103-113
    • /
    • 2022
  • On the basis of fabrication, the utilization of nano material in numerous industrial and technological system, obtained the utmost significance in current decade. Therefore, the current investigation presents a theoretical disposition regarding the flow of electric conducting Williamson nanoliquid over a stretchable surface in the presence of the motile microorganism. The impact of thermal radiation and magnetic parameter are incorporated in the energy equation. The concentration field is modified by adding the influence of chemical reaction. Moreover, the splendid features of nanofluid are displayed by utilizing the thermophoresis and Brownian motion aspects. Compatible similarity transformation is imposed on the equations governing the problem to derive the dimensionless ordinary differential equations. The Homotopy analysis method has been implemented to find the analytic solution of the obtained differential equations. The implications of specific parameters on profiles of velocity, temperature, concentration and motile microorganism density are investigated graphically. Moreover, coefficient of skin friction, Nusselt number, Sherwood number and density of motile number are clarified in tabular forms. It is revealed that thermal radiation, thermophoresis and Brownian motion parameters are very effective for improvement of heat transfer. The reported investigation can be used in improving the heat transfer appliances and systems of solar energy.

Gas sparged gel layer controlled cross flow ultrafiltration: A model for stratified flow regime and its validity

  • Khetan, Vivek;Srivastava, Ashish;De, Sirshendu
    • Membrane and Water Treatment
    • /
    • v.3 no.3
    • /
    • pp.151-168
    • /
    • 2012
  • Gas sparging is one of the techniques used to control the concentration polarization during ultrafiltration. In this work, the effects of gas sparging in stratified flow regime were investigated during gel layer controlling cross flow ultrafiltration in a rectangular channel. Synthetic solution of pectin was used as the gel forming solute. The liquid and gas flow rates were selected such that a stratified flow regime was prevalent in the channel. A mass transfer model was developed for this system to quantify the effects of gas flow rates on mass transfer coefficient (Sherwood number). The results were compared with the case of no gas sparging. Gas sparging led to an increase of mass transfer coefficient by about 23% in this case. The limitation of the developed model was also evaluated and it was observed that beyond a gas flow rate of 20 l/h, the model was unable to explain the experimental observation, i.e., the decrease in permeate flux with flow rate.

A Study on the Mass Transfer from a Square Cylinder Using Naphthalene Sublimation Technique (나프탈렌승화법을 이용한 사각관 주위에서의 물질전달에 관한 연구)

  • 유성연
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1300-1310
    • /
    • 1990
  • Naphthalene sublimation technique is employed to investigate the mass transfer processes from a square cylinder at various Reynolds numbers and various angles of attack. Distribution of the local mass transfer coefficients on each face of the cylinder changes dramatically with the angle of attack. Such variation of local mass transfer rates closely connected with the complex flow phenomena such as stagnation, acceleration, separation, reattachment and vortex shedding. The average Sherwood number has a minimum value at 12.deg.-13.deg., and a maximum value at a=20.deg.-25.deg. A comparison of present mass transfer measurement with other heat transfer measurements, using the heat/mass transfer analogy, shows good agreement in average transfer rates, same trend but notable differences in local values. Therefore, naphthalene sublimation technique can be adopted to explore heat transfer processes in the complex flow situations, which is considered to be hardly possible with the conventional heat transfer measurements.

Automation Monitoring With Sensors For Detecting Covid Using Backpropagation Algorithm

  • Kshirsagar, Pravin R.;Manoharan, Hariprasath;Tirth, Vineet;Naved, Mohd;Siddiqui, Ahmad Tasnim;Sharma, Arvind K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2414-2433
    • /
    • 2021
  • This article focuses on providing remedial solutions for COVID disease through the data collection process. Recently, In India, sudden human losses are happening due to the spread of infectious viruses. All people are not able to differentiate the number of affected people and their locations. Therefore, the proposed method integrates robotic technology for monitoring the health condition of different people. If any individual is affected by infectious disease, then data will be collected and within a short span of time, it will be reported to the control center. Once, the information is collected, then all individuals can access the same using an application platform. The application platform will be developed based on certain parametric values, where the location of each individual will be retained. For precise application development, the parametric values related to the identification process such as sub-interval points and intensity of detection should be established. Therefore, to check the effectiveness of the proposed robotic technology, an online monitoring system is employed where the output is realized using MATLAB. From simulated values, it is observed that the proposed method outperforms the existing method in terms of data quality with an observed percentage of 82.

An Experimental Study on the Effect of Air Temperature and Humidity on Humidification Performance of the Humidifying Element Used for Air Conditioning (공기 온습도가 공조용 가습 소자의 가습 성능에 미치는 영향에 대한 실험 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.732-740
    • /
    • 2019
  • Evaporative humidification using a humidifying element is widely used for humidification of a building or a data center. The performance of a humidifying element is commonly expressed as humidification efficiency, which is used independent of air temperature, humidity and water temperature. In this study, a series of tests were conducted at two air conditions (data center and commercial building) using two different humidifying elements (cellulose/PET and Glasdek) changing the frontal air velocity and water temperature. Results showed that the measured humidification efficiency was dependent on the air condition and water temperature. In fact, even dehumidification occurred at the inlet of the humidifying element at the air condition of commercial building. The reason was due to the inlet water temperature, which was lower than the dew point air temperature. As the difference between the inlet water and the dew point air temperature increased, the humidification efficiency decreased. This suggest that proper thermal model should account for the inlet region, where the amount of moisture transfer may be different from the other part of the humidification element. A simple analysis on the thermal performance of the cellulose/PET humidification element showed that the Sherwood number was adequately predicted, whereas the friction factor was ovepredicted, probably due to the simplification of the channel geometry and the neglection of the water film on the element surface.

Oxygen Transfer in Animal Cell Culture by Using a Silicone Tube as an Oxygenator (실리콘 튜브를 이용한 동물세포 배양장치의 산소전달)

  • 정흥채;김정회
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.445-450
    • /
    • 1992
  • An enhancement of the oxygen transfer rate in a 1$\ell$ bioreactor for mammalian cell culture by using a silicone rubber tubing as an oxygenator was investigated. When the silicone membrane was used to supply oxygen to the culture broth, the oxygen transfer coefficients ($k_{\iota}a$) measured in deionized-distilled water were markedly increased. Effect of surface aeration without the tubing aeration was very low under $1.0hr^{-1}$ of $k_{\iota}a$. The enhancing effects of agitation rates on $k_{\iota}a$ were much more effective than those of aeration rates. The increase of $k_{\iota}a$ with increasing tube length was observed as a result of the large surface area for oxygen supply. However, 2 m of the tube length was adequate for a 1$\ell$ vessel. The larger blade type of impeller was effective to enhance the kLa values because of its high mixing intensity. In culture medium supplemented with 5% serum, kLa values were reduced to approximately 40% probably due to the viscosity. We also obtained the normal cell concentration of $5{\times}10^6$ cells/m$\ell$ of HepG2 on microcarriers, which could be achieved in a typical bioreactor for animal cell culture.

  • PDF