• Title/Summary/Keyword: Shell plate deformation

Search Result 68, Processing Time 0.025 seconds

Numerical approaches for vibration response of annular and circular composite plates

  • Baltacioglu, Ali Kemal;Civalek, Omer
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.759-770
    • /
    • 2018
  • In the present investigation, by using the two numerical methods, free vibration analysis of laminated annular and annular sector plates have been studied. In order to obtain the main equations two different shell theories such as Love's shell theory and first-order shear deformation theory (FSDT) have been used for modeling. After obtaining the fundamental equations in briefly, the methods of harmonic differential quadrature (HDQ) and discrete singular convolution (DSC) are used to solve the equation of motion. Accuracy, convergence and reliability of the present HDQ and DSC methods were tested by comparing the existing results obtained by different methods in the literature. The effects of some geometric and material properties of the plates are investigated via these two methods. The advantages and accuracy of the HDQ and DSC methods have also been examined with different grid numbers and shell theory. Some results for laminated annular plates and laminated circular plates were also been supplied.

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I : Proposal of a heat source model

  • Kim, Jae Woong;Jang, Beom Seon;Kim, Yong Tai;Chun, Kwang San
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.348-363
    • /
    • 2013
  • The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power $CO_2$ laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.

Meshless local collocation method for natural frequencies and mode shapes of laminated composite shells

  • Xiang, Song;Chen, Ying-Tao
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.893-907
    • /
    • 2014
  • Meshless local collocation method produces much better conditioned matrices than meshless global collocation methods. In this paper, the meshless local collocation method based on thin plate spline radial basis function and first-order shear deformation theory are used to calculate the natural frequencies and mode shapes of laminated composite shells. Through numerical experiments, the accuracy and efficiency of present method are demonstrated.

On the structural behavior of ship's shell structures due to impact loading

  • Lim, Hyung Kyun;Lee, Joo-Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.103-118
    • /
    • 2018
  • When collision accident between ships or between ship and offshore platform occurs, a common phenomenon that occurs in structures is the plastic deformation accompanied by a large strain such as fracture. In this study, for the rational design against accidental limit state, the plastic material constants of steel plate which is heated by line heating and steel plate formed by cold bending procedure have been defined through the numerical simulation for the high speed tension test. The usefulness of the material constants included in Cowper-Symonds model and Johnson-Cook model and the assumption that strain rate can be neglected when strain rate is less than the intermediate speed are verified through free drop test as well as comparing with numerical results in several references. This paper ends with describing the future study.

A Study on the Finite Element Analysis of Three Dimensional Plate Structures (3차원 공간 판구조물의 유한요소 해석에 관한 연구)

  • 권오영;남정길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.54-59
    • /
    • 1999
  • High-speed electronic digital computers have enabled engineers to employ various numerical discretization techniques for solutions of complex problems. The Finite Element Method is one of the such technique. The Finite Element Method is one of the numerical analysis based on the concepts of fundamental mathematical approximation. Three dimensional plate structures used often in partition of ship, box girder and frame are analyzed by Finite Element Method. In design of structures, the static deflections, stress concentrations and dynamic deflections must be considered. However, these problem belong to geometrically nonlinear mechanical structure analysis. The analysis of each element is independent, but coupling occurs in assembly process of elements. So, to overcome such a difficulty the shell theory which includes transformation matrix and a fictitious rotational stiffness is taken into account. Also, the Mindlin's theory which is considered the effect of shear deformation is used. The Mindlin's theory is based on assumption that the normal to the midsurface before deformation is "not necessarily normal to the midsurface after deformation", and is more powerful than Kirchoff's theory in thick plate analysis. To ensure that a small number of element can represent a relatively complex form of the type which is liable to occur in real, rather than in academic problem, eight-node quadratic isoparametric elements are used. are used.

  • PDF

Analytical Study on Punching Shear of Reinforced Concrete Flat Plates (철근콘크리트 플랫 플레이트의 뚫림전단 거동에 관한 해석적 연구)

  • Kim, Min-Sook;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.409-415
    • /
    • 2010
  • A finite element model for punching shear of flat plate structures is presented. A parametric study also has been conducted to verification of influence of several parameters in terms of the flexural reinforcement ratio, slab thickness. Reisnner-Mindlin assumptions are adopted to consider of shear deformation. Layered shell element is considered for the material non-linearities. The finite element model of this study was verified comparing with existing experimental results. The model is able to predict the capacity of the flat plate structures. The punching shear of flat plate structures varied depending on the flexural reinforcement ratio, slab thickness.

Numerical Formulation of Axisymmetric Shell Element and Its Application to Geotechnical Problems (축대칭 쉘 요소의 유한요소 수식화와 지반공학적 활용)

  • Shin, Hosung;Kim, Jin-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.27-34
    • /
    • 2020
  • Use of axisymmetric shell element for the structure increases the efficiency and accuracy in finite element analysis of the interaction between the ground and the structure. This paper derived the force balance equation and the moment balance equation for an axisymmetric shell element based on Kirchhoff's theory. The governing equation for the axial deformation used the isoparametric shape function in the Galerkin formulation, and the governing equation for the shell bending used the higher-order shape function. The developed axisymmetric shell element was combined with Geo-COUS, a geotechnical finite element program for the coupled analysis with the ground. The accuracy of the developed element was confirmed through the example analyses of the circular plate and the liquid storage tank. And the energy balance equation for the axisymmetric shell element is presented.

Thermal Deformation Error Analysis and Experiment of a Linear Motor (Linear Motor의 열변형 오차해석 및 실험)

  • 최우혁;민경석;오준모;최우천;홍대희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.286-289
    • /
    • 1997
  • In the design of structure the forces acting on the structure are important parameter for noise and vibration control. However, in the complex structure, the forces at the injection pomt on the structure cannot be measured directly. Thus it is necessary to find out indirect force evaluation method. In thls paper forces have been measured with in-situ vibration responses and system information. Three existing techniques of indirect force measurement, viz. direct inverse, principal component analysis and regularization have been compared. It has been shown that multi-vibration responses are essential for the precise estimation of the forces. To satisfy those cond~tions, Rotary compressor is adopted as test sample, because it is very difficult to measurc the injection forces from internal excitat~on to shell. It has also been obtained that relatively higher force IS transmitted through three welding paths to the compressor shell. It shows a good agreement between direct and indirect force evaluation wlth curvature shell and plate and is investigated the possibility of force evaluation of rotary compressor as a complex structure.

  • PDF

Penetration Characteristics of CFRP Laminated shells according to Stacking Sequence and Curvature (CFRP 적층쉘의 적층구성 및 곡률 변화에 따른 관통 특성)

  • Cho Young Jea;Kim Young Nam;Yang In Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.164-171
    • /
    • 2005
  • This study aims to examine an effect of stacking sequence and curvature on the penetration characteristic of a composite laminated shell. For the purpose, we manufactured specimens with different stacking sequences and curvatures, and conducted a penetration test using an air-gun. To examine an influence according to stacking sequence, as flat plate and curvature specimen had more plies, their critical penetration energy was higher, Critical penetration energies of specimen A and C with less interfaces somewhat higher than those of B and D with more interfaces. The reason that with less interfaces, critical penetration energy was higher is pre-impact bending stiffness of composite laminated shell with less interfaces was lower than that of laminated shell with more interfaces, but bending stiffness after impact was higher. And it is because interface, the weakest part of the composite laminated shell, was influenced by transverse impact. As curvature increases, critical penetration energy increases linearly. It is because as curvature increases, resistance to in-plane deformation as well as bending deformation increases, which need higher critical penetration energy. Patterns of cracks caused by penetration of composite laminated shells include interlaminar crack, intralaminar crack, and laminar fracture. A 0$^{\circ}$ply laminar had a matrix crack, a 90$^{\circ}$ply laminar had intralaminar crack and laminar fracture, and interface between 0$^{\circ}$and 90$^{\circ}$laminar had a interlaminar crack. We examined crack length and delamination area through a penetration test. For the specimen A and C with 2 interface, the longest circumferential direction crack length and largest delamination area were observed on the first interface from the impact point. For the specimen B and D with 4 interface, the longest crack length and largest delamination area were observed on the third interface from the impact point.

Bending, Free Vibration and Buckling Analysis of Anisotropic Composite Laminated Plate and Shell Structures (비등방성 복합적층판 및 쉘 구조의 휨, 자유진동 및 좌굴해석)

  • Yoon, Seok Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.55-67
    • /
    • 1999
  • The ratios of elastic to shear modulus of the structures as laminated composite plates and shells, are very large. They are much susceptible to effect of shear deformation. In order to obtain the accurate solutions of laminated composite plate and shells, the effects of shear strain should be considered for the analysis and design of them. Especially, the more exact solution can be obtained in applying to higher-order shear deformation theory. Therefore, in this paper, the third-order shear deformation theory is used to present the distributions of bending, the characteristics of natural frequencies and the buckling load according to the effects of ply orientation, number of layers for the laminated composite plates and shells with simply supported boundary conditions.

  • PDF