• Title/Summary/Keyword: Shell mode

Search Result 282, Processing Time 0.039 seconds

Natural frequencies and mode shapes of thin-walled members with shell type cross section

  • Ohga, M.;Shigematsu, T.;Hara, T.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.223-236
    • /
    • 2002
  • An analytical procedure based on the transfer matrix method to estimate not only the natural frequencies but also vibration mode shapes of the thin-walled members composed of interconnected cylindrical shell panels is presented. The transfer matrix is derived from the differential equations for the cylindrical shell panels. The point matrix relating the state vectors between consecutive shell panels are used to allow the transfer procedures over the cross section of the members. As a result, the interactions between the shell panels of the cross sections of the members can be considered. Although the transfer matrix method is naturally a solution procedure for the one-dimensional problems, this method is well applied to thin-walled members by introducing the trigonometric series into the governing equations of the problem. The natural frequencies and vibration mode shapes of the thin-walled members composed of number of interconnected cylindrical shell panels are observed in this analysis. In addition, the effects of the number of shell panels on the natural frequencies and vibration mode shapes are also examined.

Dynamic Behavior Analysis of Stiffened Cylindrical Shell Filled with Fluid (내부가 유체로 채워진 보강원통쉘의 동적거동 해석)

  • Youm, Ki-Un;Yoon, Kyung-Ho;Lee, Young-Shin;Kim, Jong-Kiun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2875-2886
    • /
    • 1996
  • This work present the experimental resutls for the free vibration of unstiffened, stiffened cylindrical shell filled with air, half water and full water. The natural frequencies and mode shapes of unstiffened, stiffened cylindrical shell are obtained experimentally also. The natural frequencies of stiffened cylindrical shell were generally highter than those of unstiffened cylindrical shell and natural requencies were decreased as cylindrical shell was filled with water. The effect of circumferential stiffener in the first mode was shown that natural frequency more increased 25% at air environment, 29% at half water environment and 37% at full water than those of unstiffened cylindrical shell, respectively. Also, the natural frequencies were decreased according to the added mass effect of fluid in the shell of unstiffened and stiffened cylindrical shell. The six mode shape results of all cases are simular and given. The natural frequencies are determined for a wide range of parameters : e.g. unstiffened shell, and filled with air, half and full water. The effects of varying the parameters on the free vibration frequencies and mode shapes are discussed.

Non-axisymmetric dynamic response of buried orthotropic cylindrical shells under moving load

  • Singh, V.P.;Dwivedi, J.P.;Upadhyay, P.C.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.39-51
    • /
    • 1999
  • The dynamic response of buried pipelines has gained considerable importance because these pipelines perform vital role in conducting energy, water, communication and transportation. After realizing the magnitude of damage, and hence, the human uncomfort and the economical losses, researchers have paid sincere attention to this problem. A number of papers have appeared in the past which discuss the different aspects of the problem. This paper presents a theoretical analysis of non-axisymmetric dynamic response of buried orthotropic cylindrical shell subjected to a moving load along the axis of the shell. The orthotropic shell has been buried in a homogeneous, isotropic and elastic medium of infinite extent. A thick shell theory including the effects of rotary inertia and shear deformation has been used. A perfect bond between the shell and the surrounding medium has been assumed. Results have been obtained for very hard (rocky), medium hard and soft soil surrounding the shell. The effects of shell orthotropy have been brought out by varying the non-dimensional orthotropic parameters over a long range. Under these conditions the shell response is studied in axisymmetric mode as well as in the flexural mode. It is observed that the shell response is significantly affected by change in orthotropic parameters and also due to change of response mode. It is observed that axial deformation is large in axisymmetric mode as compared to that in flexural mode.

A Study on Evaluation Method for Piping Shell Mode Vibration (배관 Shell Mode 진동 평가방법에 대한 연구)

  • Chun, Chang-Bin;Park, Soo-Il;Chun, Hyong-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1285-1289
    • /
    • 2006
  • In a large diameter piping system, high frequency energy can produce excessive noise, high vibration, and failures of thermo-well, instrumentation, and attached small-bore piping. High frequency energy is generated by flow induced vibration like vortex shedding in orifices and valves. Once this energy is generated, amplification may occur from acoustical and/or structural resonances, resulting in high amplitude vibration and noise. At low frequencies, pipe vibration occurs laterally along the pipe's length, but at higher frequencies, the pipe shell wall vibrates radially across its cross-section. The simple beam analogy which is based on the beam mode vibration can not be applied to evaluate shell mode vibration. ASME OM3 recommends that the stress be measured directly by strain gauge and be evaluated according to the fatigue curves of the piping material. This Paper discusses the excitation and amplification mechanism relevant to high frequency energy generation in piping system, the monitoring method of the shell mode vibration in ASME OM3, the evaluation method generally used in the industry. Finally this paper presents the stress evaluation of the cavitating venturi down stream piping, where high frequency shell mode vibrations were observed during the operation.

  • PDF

Analysis of Free Vibration of a Cylindrical Shell with a Circular Plate Under Various Kinds of Boundary Conditions (다양한 경계조건에서 원판이 결합된 원통 셸의 고유진동 해석)

  • 임정식;손동성
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.936-948
    • /
    • 1998
  • A theoretical formulation for the analysis of free vibration of a cylindrical shell with a circular plate attached at an arbitrary axial position of the shell under various kinds of boundary conditions was derived and programed to get the numerical results for natural frequencies and mode shapes of the combined system. The boundary conditions of the shell to be considered here are clamped-free, clamped-simply supported, both ends clamped and both ends simply supported. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS. The results showed good agreement with those of ANSYS in frequencies and mode shapes. The program will contribute to the design optimization of a shell/plate combined system through the analysis of natural frequencies and mode shapes for the system.

  • PDF

Structural stability of laminated composite material for the effectiveness of half axial wave mode: Frequency impact

  • Muzamal, Hussain
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.309-315
    • /
    • 2022
  • This paper depicts the diagram of cylindrical shells as an essential idea. It centers around an outline of exploration and use of cylindrical shell in expansive current circumstance. In view of investigation of the current and prospect of model as a piece of present exploration work, a straightforward contextual analysis is examined with Love's shell theory based on Galerkin's method. The cylindrical shells are attached from one end of the cylindrical shells. The frequencies of ring support shells are investigated against the half axial wave mode. The frequencies increase on increasing the half axial wave mode. Also, the frequencies are downsized with ring supports. The software MATLAB is preferred to others because in this software computing coding is very easy to do. Just single command 'eig' furnishes shell frequencies and mode shapes by calculating eigenvalues and eigenvectors respectively. The shell vibration frequencies for cylindrical shells are compared with those results found in the open literature.

The Effect of Liquid Level on the Natural Frequencies of a Partially Liquid-Filled Circular Cylindrical Shell (유체로 채워진 원통형 쉘의 고유진동수에미치는 수위의 영향)

  • 정경훈;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.314-319
    • /
    • 1995
  • The effect of liquid level on the natural frequencies and mode shapes of a partially liquid-filled circular cylindrical shell with various boundary conditions is investigated by means of a theoretical analysis based upon Fourier series expansion method and a finite element analysis using ANSYS computer program. Two dimensional mode shapes of the liquid-coupled shell structure are obtained by the ANSYS finite element analysis and show that the liquid level affect the nodal point movement. It is found that the variation of normalized naturalfrequencies (natural frequencies of liquid-filled shell/antural frequencies ofempty shell) to the liquid level is depend on the axial mode numbers and circumferential wave numbers. Additionally, it is found that the number of variational steps of normalized natural frequencies is identicial to that of axial nodal points of the mode shape.

  • PDF

Free Vibration of a Thin Circular Cylindrical Shell in Fluid (유체중의 얇은 원통쉘의 자유진동)

  • Liang, G.H.;Kawatate, K.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.3
    • /
    • pp.117-125
    • /
    • 1991
  • Two methods are presented to calculate the natural frequency of an elastic thin circular cylindrical shell vibrating in fluid. Both of them give the natural frequency in analytical expression One is in a simple form and suitable for higher deformation mode of the shell. Another seems to be exact and be used to a case of the shell partially immersed in fluid. When the shell is fully immersed in fluid results show: fur the lower deformation mode of the shell, the surrounding fluid has remarkable effect upon the natural frequency; for the higher mode, the fluid effect becomes small. When the shell is partially immersed in fluid. it does not occur always that the greatest effect take place at the lowest deformation mode.

  • PDF

Modal Analysis of the Bell Type Shell with Thickness and Asymmetric Effects (鐘形셀의 두께變化 및 非對稱效果에 따른 振動모우드 解析에 관한 硏究)

  • 정석주;공창덕;염영하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.383-391
    • /
    • 1986
  • Mode shapes and natural frequencies of the bell type shell are analyzed numerically by the finite element method. The impulse hammer method and the Fast Fourier Transform analyzer are used for the experimental test. All types of mode shapes are expressed by the computer graphics. Numerical solutions are good agreement with the experimental results. The sustaining sound of the typical bell-type shell depend upon the first flexural mode (0-2 mode) and the second flexural mode (0-3 mode), and their mode shapes are independent upon thickness Dangjwas, holes, and added mass effects. Asymmetric effects by Dangjwas, holes and added mass give rise to beat frequencies, and the added mass is found to be most effective.

Beat Map of King Song-Dok Bell (성덕대왕신종의 맥놀이 지도)

  • Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.353.1-353
    • /
    • 2002
  • Impulse response of a slightly asymmetric cylindrical shell is derived. Receptance method is applied to obtain the vibration mode and natural frequency of the slightly asymmetric cylindrical shell. Impulse response model is used to identify the vibration beat characteristics of King Song-Dok Bell. The theretical mode is compared and verified by the measured mode of King Song-Dok Bell. (omitted)

  • PDF