• Title/Summary/Keyword: Sheet molding compound

Search Result 35, Processing Time 0.02 seconds

A Study on the Preparation and Mechanical Properties of Hybrid Composites Reinforced Waste FRP and Urethane Foam (폐 FRP/Urethane Foam 충진 혼성복합재의 제조 및 기계적 물성에 관한 연구)

  • 황택성;신경섭;박진원
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.564-570
    • /
    • 2000
  • The waste FRP occured in the fabrication of SMC (sheet molding compound) bathtubs and the waste polyurethane foam occured in electronic manufacture and waste insulator were applied as a soundproof and light weight pannel in the waste FRP unsaturated polyester matrix resin composites to recycle. The effect of filler contents on the mechanical properties and interfacial phenomena of the filler and matrix on the composites was evaluated. The tensile strength of composites reached its maximum value of 82.34 MPa when the filler content was 70 wt%, and the more content of reinforcement is increased, the more tensile modulus was decreased. The flexural strength and modulus of composites, reinforced 70 wt% with filler content, were dominant compared to the other samples to 72.5 MPa, 958.4 MPa respectively. When composite of reinforced 70 wt% with filler content, it was confirmed that pull out phenomena and cracks did not occur in the interface of reinforcement and matrix resin through the SEM observation. Also, waste FRP and urethane foam were dispersed well into matrix resin as filler.

  • PDF

Installation and Safety Evaluation of Tracking-type Floating PV Generation Structure (추적식 수상 태양광발전 구조물의 시공 및 안전성 평가)

  • Jang, Min-Jun;Kim, Sun-Hee;Lee, Young-Geun;Woo, Sang-Byock;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Pultruded glass fiber reinforced polymeric plastic (PFRP) and FRP member manufactured by sheet molding compound (SMC) have superior mechanical and physical properties compared with those of conventional structural materials. Since FRP has an excellent corrosion-resistance and high specific strength and stiffness, the FRP material may be highly appreciated for the development of floating-type photovoltaic (PV) power generation system. In this paper, advanced floating PV generation system made of PFRP and SMC is designed. In the design, it includes tracking solar altitude by tilting photovoltaic arrays and tracking solar azimuth by spinning structures. Moreover, the results of the finite element analysis (FEA) are presented to confirm stability of entire structure under the external loads. Additionally, installation procedure and mooring systems in the Hap-Cheon Dam are discussed and the measurement of strain under the actual circumstances is conducted for assuring stability of actually installed structures. Finally, by comparison with allowable stress, appropriate safety of structure is confirmed to operate the system.

A Study on the Water Quality for Efficient Management in the Water Tanks (저수조의 효율적 관리를 위한 수질실태에 관한 연구)

  • Park, Hyun-Geoun;Ryu, Seung-Chul;Jun, Soo-Im
    • Journal of Environmental Science International
    • /
    • v.18 no.12
    • /
    • pp.1339-1347
    • /
    • 2009
  • This study tried to investigate and analyze the actual state such as the regional, classified, and material characteristics of the water quality in order to research the several factors by which the filtrated water of the total 250 cases can be polluted in the water tank. The 215 points (86%) clean the water tanks twice a year regularly and J-city has done the best job of cleaning the water tanks. The fifty points (20%) of the total 250 investigation points examine the water quality of the water tanks every year, however, the 175 investigation points (70%) do not execute the inspection of water quality. In the case of the regional characteristics in the water quality, the 23 points (46%) in H-county, the 17 points (34%) in S-county, and the 16 points (32%) in G-city are incongruent in the standard, and the incongruity ratio of the water quality in J-city is the lowest. The result of the classified incongruity shows that total coliforms were found at the 61 investigation points, mesophilic bacteria were found at the 27 points, and turbidity was found at the 12 points. In the case of the material incongruity, concrete was found at the 63 investigation points as the most distinguished factor, and FRP (fiberglass reinforced plastic) at the 23 points, SMC (sheet molding compound) at the 12 points, and stainless steel was found at the 2 points.

Development of Element Technique for the Floating PV Generation Structure Using FRP (FRP를 활용한 수상 부유식 태양광발전 구조물의 요소기술 개발)

  • Seo, Su-Hong;Choi, Jin-Woo;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.103-108
    • /
    • 2014
  • Fiber reinforced polymer plastic (FRP) structural members are recently available in construction industries due to various material properties such as high specific strength and stiffness, light-weight, and corrosionresistance. The floating PV generation structure can also be an illustration for applying FRP in construction applications. The floating PV generation structure has been recently issued as a representative item for the low carbon and green growth campaign and many related studies have been conducted for the structural safety and commercial viability. Moreover, the floating PV generation structures for the commercial purpose have been constructed. In this paper, the investigation and development processes of elements for the floating PV generation structure are presented during commercialization.

Performance Enhancement of Floating PV Generation Structure Using FRP (FRP를 활용한 부유식 태양광발전 구조시스템의 성능 향상)

  • Choi, Jin-Woo;Joo, Hyung-Joong;Nam, Jeong-Hun;Hwang, Seong-Tae;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • In this study, we suggest the new floating PV generation structure which is improved the structural and economical efficiency compared with the system developed in the previous research. Pultruded FRP has superior physical and chemical material properties compared with those of conventional structural materials. Especially, pultruded FRP has an excellent corrosion-resistance, light-weight, and it also has high specific strength and stiffness which are highly appreciated for the design and fabrication of floating PV generation structure under harsh environmental condition. In this study, structural analysis using the finite element method has been performed to investigate the safety of new floating PV generation structure and newly applied structural members.