• Title/Summary/Keyword: Sheet Metal

Search Result 1,286, Processing Time 0.026 seconds

Analysis of Bending Behavior of Ultra-thin SS304 Stainless Steel Sheets Considering the Surface Effect (표면 효과를 고려한 극박 SS304 스테인리스 강판의 굽힘 거동 분석)

  • Jung, J.;Chae, J.Y.;Chung, Y.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.323-330
    • /
    • 2020
  • The surface region of a sheet metal may have different characteristics from the inner region because the surface region is less restricted than the interior. In addition, the grains on the free surface are less hardened because of surface adsorption of the dislocations, rather than piling up. In the case of bulk or thick sheet metals, this effect is negligible because the fraction of the surface region is much smaller than that of the inner region. However, this surface effect is important in the case of ultra-thin sheet metals. In order to evaluate the surface effect, tensile and bending tests were performed for the SS304 stainless steel with a thickness of 0.39 mm. The bending force predicted using the tensile behavior is higher than the measurement because of the surface effect. To account for the surface effect, the surface layer model was developed by dividing the sheet section into surface and inner layers. The mechanical behaviors of the two regions were calibrated using the tensile and bending properties. The surface layer model reproduced the bending behavior of the ultra-thin sheet metal.

Numerical Study on Flexible Forming Process for Sheet Metal (박판용 가변성형공정의 수치적 연구)

  • Heo, S.C.;Seo, Y.H.;Park, J.W.;Ku, T.W.;Song, W.J.;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.281-284
    • /
    • 2009
  • Flexible forming process for sheet metal using reconfigurable die is introduced based on numerical simulation. Numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. Elastic cushion which has high resilience behavior from excessive deformation are inserted between forming punches and blank material for smoothing the forming surface which has discrete due to characteristics of the flexile die. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation. Formability in view of surface defect such as onset of dimple is compared with regard to various punch sizes. Consequently, it is confirmed that the flexible forming process for sheet material has appropriate capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming process.

  • PDF

An Improved Scheme for the Blank Holding Force in Sheet Metal Forming Analysis using the Modified Membrane Finite Element Considering Bending Effect (굽힘이 고려된 개량 박막 유한요소를 사용한 박판금속 성형해석에서의 블랭크 홀딩력 적용방법에 관한 연구)

  • Choi, Tae-Hoon;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.347-355
    • /
    • 1999
  • The paper is concerned with an improved scheme for application of the blank holding force in order to take account of the thickness distribution in the sheet material of the flange region. The scheme incorporates with a modified membrane finite element method for planar anisotropic materials. The new scheme proposed two coefficients α and βto calculate the compressive stress in the sheet metal due to the blank holding force, which should be determined properly for accurate analysis. The effect of αand βon the blank holding force distribution and the deformed shape is investigated with simulation of rectangular cup deep drawing processes by changing parameter values.

  • PDF

Rigid-Plastic Explicit Finite Element Formulation for Two-Dimensional Analysis of Sheet Metal Processes (2차원 박판성형공정해석을 위한 강소성 외연적 유한 요소수식화)

  • 안동규;정동원;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.206-211
    • /
    • 1993
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solution since it improves the convergency problem,memory size and computational time especially for the case of complicated geometry and large element number. In the present work, a basic formulation for rigid-plastic explicit finite element analysis of plain strain sheet metal forming problems has been proposed. The effect of some basic parameters involved in the dynamic analysis has been studied in detail. A direct trial-and-error method is introduced to treat contact and friction. In order to show the validity and effectiveness of the proposed explicit scheme, computation are carried out for cylindrical punch stretching and the computational results are compared with those by the implicit scheme as well as with a commercial code. The proposed rigid-plastic explicit element method can be used as a robust and efficient computational method for analysis of sheet method forming.

  • PDF

Formability of Non-Vinyl Pre-coated Metal Sheet (Non-Vinyl Pre-coated Metal재의 성형성에 관한 연구)

  • Kim, Dong-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.121-128
    • /
    • 2001
  • This study has been performed to investigate formability of non-vinyl PCM(pre-coated metal)sheet. First, physical test of PCM sheets were tested to evaluate finish coating characteristic of PCM. And then, test equipment was made for friction test and three non-vinyl PCM sheets were tested by straight pulling method. This paper provides the results of the friction tests showing the influence of sheet surface texture and process conditions. It was found that the influence of contact pressure and speed had an effect upon the level of friction. Also using tests, the scratch resistance of a series of polyester coating has been investigated. This investigation aims to clarify the process conditions that prevent the scratch of PCM to form the good electrical appliances such as microwave oven, air conditioner and refrigerator etc.

  • PDF

Production of CO2 Laser Forming Machine for Bending of Sheet Metal Using the FE-Analysis (유한요소해석을 이용한 박판 벤딩용 CO2 레이저 성형기 제작)

  • Ko D.C.;Lee C.J.;Kim B.M.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.319-325
    • /
    • 2006
  • The laser forming process is a new flexible forming process without forming tools and external force, which is applied to various fields of industry. Especially, applications of the laser forming process focused on cutting, welding and marking process. In this paper, the laser bending process of sheet metal which is heated by laser beam and formed by internal stress is simulated by using thermo elastic-plastic analysis model. Based on the result of FE-analysis, the laser bending machine is made to obtain reliable data for sheet bending. Under the same condition as FE-analysis, the laser bending experiment has been performed to ver 펴 the result of FE-analysis and good agreement has been obtained between FE-analysis and experiments. Additional laser bending experiments have been performed to evaluate the laser bending machine.

A study on the Processing Variables of Rapid Prototyping using Sheet Metal (금속박판을 이용한 쾌속조형의 공정변수에 관한 연구)

  • 이상찬;박정남;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.42-45
    • /
    • 2003
  • The purpose of this study is the development or the extensive Rapid Prototyping Technique. which can resolve the long-term manufacturing process, shrinkage and deformation occurring rapid prototyping technique. To begin with. the various specimens for tensile were manufactured on the basis of this modeling technology. Then, many kinds of the laminate pieces for the test were made by using the sheet metals lmm and 1.5mm thickness which is composed of the same ingredient. The tensile specimen were manufactured by changing the process variables, Such as electric current, pressure and resistance welding time for the Rapid Prototyping with metal sheet. And then by using the Taguchi method. The interrelation between the specimen and mechanical properties were determined and the system for the optimum process variable organized.

  • PDF

An analysis of the wrinkling initiation in sheet metal forming using bifurcation theory (분기좌굴이론을 이용한 박판성형공정에서의 주름발생해석)

  • 김종봉;양동렬;윤정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.28-31
    • /
    • 1998
  • Wrinkling is one of the major defects in sheet metal products and may be also attributable to the wear of the tool. The initiation and growth of the wrinkles are influenced by many factors such as stress state, mechanical properites of the sheet material, geometry of the body, and contact condition. It is difficult to analyze the wrinkling initiation and growth considering the factors because the effects of the factors are very complex and the wrinkling behavior may show wide variation for small deviation of the factors. In this study, the bifurcation theory is introduced for the finite element analysis of wrinkling initiation and growth, All the above mentioned factors are conveniently considered by finite element method. The finite element formulation is based on the incremental deformation theory and elastic-plastic material modeling. The finite element analysis is carried out using the continuum-based resultant shell elements considering the planar anisotropy of the sheet metal. The proposed method is verified by employing to column buckling problem. And then, the initiation and growth of wrinkling in deep drawing of cylindrical cup are analyzed.

  • PDF

Bending Characteristics of DP980 Steel Sheets by the Laser Irradiation (DP980강판의 레이저 조사에 따른 굽힘 변형특성 연구)

  • Song, J.H.;Zhang, Y.;Lee, J.S.;Park, S.J.;Choi, D.S.;Lee, G.A.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.378-383
    • /
    • 2012
  • Laser forming is an advanced process in sheet metal forming in which a laser heat source is used to shape the metal sheet. This is a new manufacturing technique that forms the metal sheet only by a thermal stress. Analyses of the temperature and stress fields are very important to identify the deformation mechanism in laser forming. In this paper, temperature distributions and deformation behaviors of DP980 steel sheets are investigated numerically and experimentally. FE simulations are first conducted to evaluate the response of a square sheet in bending. The effects of process parameters such as laser power and scanning speed are then analyzed numerically and experimentally. It is observed that experimental and numerical results are in good agreement. These results provide a relationship between the line energy and the angles for laser bending of DP980 steel sheets.

Formulation of the Contact Damping and its Application to the Explicit Finite Element Method (접촉감쇠의 수식화 및 외연적 유한요소법에의 적용)

  • 이상욱;양동열;정완진
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.306-312
    • /
    • 1999
  • In the recent sheet metal forming simulations, it increases to adopt the dynamic explicit method for an effective computation and the elastoplastic formulation for stress recovery. It is inevitable in the dynamic explicit method that some noises occur, which sometimes partly spoil results of simulations. This phenomenon becomes severer when complicate contact conditions are included in simulations. In commercial dynamic codes, the concept of contact damping is introduced. However, the formulation process of it is not revealed well. In this paper, a contact damping method is formulated in order for effectively suppressing noises occurring due to complicated contact conditions. This is checked by analyzing a simple sheet metal stamping process (U-draw bending). From the computational results, it is shown that the contact damping can effectively control the noises due to contacts, especially when considering the sheet thickness, and help to develop more reliable internal stress states, which result in more realistic shapes after springbank.

  • PDF